
Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

WHITE PAPER

LAYER SEVEN SECURITY

PERFECT STORM
THE BRAVE NEW WORLD OF SAP SECURITY

Layer Seven Security
www.layersevensecurity.com
info@layersevensecurity.com

 Tel. 1 888 995 0993

Access controls and other areas traditionally focused upon by security professionals are
no longer the only major risks to SAP systems. Today, SAP is confronted with a growing
landscape of threats that include injection a�acks, cross site scripting, session hijacking
and denial of service. For the most part, business owners and security professionals are
unaware of profound vulnerabilities laying in the technical components of SAP.

These risks have arisen from the gradual shi� towards open source languages, proto-
cols, standards and Web-enabled services, as well as the increasing size and complexity
of SAP. When combined with inherent weaknesses in existing network controls and the
sophistication of a�acks targeted at corporate applications and data, such a rare combi-
nation of circumstances should be viewed as a sinister perfect storm.

Vulnerabilities in critical SAP components and services could be exploited by external
a�ackers to interrupt SAP services, implement malicious changes to programs and files,
intercept and alter data in transit, and corrupt or modify data directly in databases. If
le� una�ended, these vulnerabilities raise serious concerns over the ability of compa-
nies to comply with SOX, PCI DSS and other standards.

This white paper discusses some of the methods used to a�ack and compromise SAP
systems. It also addresses some lesser known risks to raise awareness within the
community and improve the overall posture of SAP security.

ABSTRACT

1

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

LAYER SEVEN SECURITY | PERFECT STORM

WHITE PAPER

LAYER SEVEN SECURITY

© Copyright Layer Seven Security 2011 - All rights reserved.

No portion of this document may be reproduced in whole or in part without the prior wri�en permission of Layer Seven Security.

Layer Seven Security offers no specific guarantee regarding the accuracy or completeness of the information presented, but the profes-
sional staff of Layer Seven Security makes every reasonable effort to present the most reliable information available to it and to meet or
exceed any applicable industry standards.

This publication contains references to the products of SAP AG. SAP, R/3, xApps, xApp, SAP NetWeaver, Duet, PartnerEdge, ByDesign,
SAP Business ByDesign, and other SAP products and services mentioned herein are trademarks or registered trademarks of SAP AG in
Germany and in several other countries all over the world. Business Objects and the Business Objects logo, BusinessObjects, Crystal
Reports, Crystal Decisions, Web Intelligence, Xcelsius and other Business Objects products and services mentioned herein are trademarks
or registered trademarks of Business Objects in the United States and/or other countries.

SAP AG is neither the author nor the publisher of this publication and is not responsible for its content, and SAP Group shall not be li-
able for errors or omissions with respect to the materials.

2

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

LAYER SEVEN SECURITY | PERFECT STORM

WHITE PAPER

LAYER SEVEN SECURITY

CONTENTS

THE BRAVE NEW WORLD OF SAP SECURITY

REMOTE AUTHENTICATION

SECURING REMOTE FUNCTION CALLS

EVIL TWIN, MAN IN THE MIDDLE AND OTHER ATTACKS

CONTROLLING DEFAULT SAP USERS

SAP_NEW

BREAKING SAP PASSWORD SECURITY

EXPLORING SAP BACKDOORS AND ROOTKITS

ATTACKS AGAINST THE SAP JAVA ENGINE

MANAGING VULNERABLE SAP WEB SERVICES

EXAMINING VULNERABILITIES IN SAP GUI AND WEB CLIENTS

THE SOX AND PCI IMPLICATIONS OF SAP VULNERABILITIES

SOFTWARE, AUDIT PROGRAMS AND WEB RESOURCES

4

8

10

12

14

15

16

18

20

24

26

28

31

33

INTRODUCTION

CHAPTER ONE

CHAPTER TWO

CHAPTER THREE

CHAPTER FOUR

CHAPTER FIVE

CHAPTER SIX

CHAPTER SEVEN

CHAPTER EIGHT

CHAPTER NINE

CHAPTER TEN

CHAPTER ELEVEN

CHAPTER TWELVE

ENDNOTES

3

THE BRAVE NEW WORLD OF SAP SECURITY
PERFECT STORM

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

WHITE PAPER

LAYER SEVEN SECURITY

The standard security baseline established for SAP systems does not adequately
safeguard organisations from contemporary threats. SAP has evolved from a narrow,
back-office system accessible exclusively through internal networks into a vast,
complex association of a seemingly infinite number of applications.

Security efforts up to now have been largely focused upon the enterprise application
known as SAP ERP. Today, ERP is only one of five interconnected enterprise
applications in SAP’s Business Suite. Many of these areas are uncharted territory for
security professionals.

The widening of SAP’s product offering has been accompanied by another more
dangerous trend: Internet connectivity. SAP R/3 has been Web-enabled since the
introduction of 3.1G in the 1990s. Today, companies leverage the Internet through SAP
to engage directly with customers, suppliers and other partners. As a result, business
processes increasingly stretch across corporate boundaries and data is no longer
concentrated within SAP but dispersed across a myriad of external systems connected
through the Web.

To perform this feat, SAP embraced Java, a more common programming language than
its own propriety code. It also adopted more open standards for communication and
database interfacing such as HTTP, SOAP/ XML and Open SQL. Finally, it built an
integration platform powerful enough to translate two languages and handle the
intense loads placed by both SAP’s own applications and external systems. This
platform was known as the SAP Web Application Server (Web AS), later renamed to the
Netweaver Application Server. In essence, the Web AS was no different from any other
web server. It served the same functions and crucially, suffered from the same
vulnerabilities.

The introduction of the Web AS, as well as Java and open standards, enabled SAP to
meet the demands for greater connectivity and accessibility. However, it has also
exposed the inherent weaknesses in legacy SAP services that were never designed to
withstand the threat of external a�ack and intensified the risks associated with other,
more well-known vulnerabilities.

This was reflected by a sudden, dramatic increase in the number of Security Notes. In
2007, SAP released approximately 20 Notes. By 2010, it had risen to almost 900. Today,
SAP routinely issues more Security Notes in a single month than released in any year
between 2000 and 2007.

PERFECT STORM: THE BRAVE
NEW WORLD OF SAP SECURITY

INTRODUCTION

4

Aside from the sheer quantity of Notes issued by SAP, other factors that raised
concerns included the type of vulnerabilities patched by the Notes which o�en
targeted communication components and protocols such as the Message Server,
Internet Communication Manager (ICM) and Remote Function Calls (RFC), as well as
areas such as database authentication, ABAP programming and password hashing.
Tellingly, they also targeted a�ack vectors associated with web applications including
SQL Injection, Cross-Site Scripting (XSS), Directory Traversal and Cross Site Request
Forgery (XSRF).

Web applications are the preferred target for external hackers looking for remote,
anonymous and accessible pathways to corporate applications and data stored in
backend servers. They are made even more a�ractive by low barriers to entry, o�en
requiring nothing more than a laptop and a browser. A�acks vectors are the methods
deployed by hackers to compromise system resources.

The Open Web Application Security Project (OWASP) is a widely respected,
not-for-profit body that is dedicated to supporting organisations develop and
maintain secure web applications. OWASP periodically publishes an analysis of the
Top Ten Most Critical Web Application Security Risks based on extensive industry
research. This study is widely regarded as the most authoritative, independent
analysis of the threat landscape for Internet applications. The most recent list is
summarized in Figure 1.2

If SAP systems are not patched, upgraded or otherwise secured, they are vulnerable to
every a�ack vector identified in the OWASP Top Ten. Furthermore, they are vulnerable
to four of the eight other application security risks singled out by OWASP in the study. 2
This will be illustrated in the following chapters which will examine lesser known SAP
vulnerabilities and provide practical advice on measures to counteract threats similar
to those o�en targeted at web applications to devastating effect. The millions of
customer and credit card records compromised during the well-publicized breaches at
Heartland Payment Systems, Sony and TJ Maxx are the tip of the iceberg. According to
U.S Congress reports, such cybercrime costs the U.S economy an estimated $8 billion a
year and resulted in the the� of $1 trillion worth of intellectual property from U.S
businesses.3

Incidences of data breach are increasing and growing in sophistication. According to a
recent study by the University of Toronto’s Rotman School of Business, “present day
threats routinely utilize sophisticated methods of invasion, evasion and propagation”.
The study also notes that threats are increasingly “designed for monetization, either
through the the� of corporate secrets or through the acquisition and abuse of
identities and credentials”.4

This echoed the findings of an earlier study performed by Verizon, the U.S Secret
Service and the Dutch High Tech Crime Unit which concluded that a�acks are generally
perpetrated by well-trained external agents using automated tools, supported by
organized, financially-motivated groups. It’s worth noting that the average direct and
indirect cost of a data breach calculated by the study was $7.2M.5 This includes
detection, investigation, notification, litigation and reputational harm, not to mention
lost business.

A�acks are not only targeted at systems housing large volumes of sensitive personal,
credit or banking information. Almost all companies are vulnerable, regardless of size
and industry. A�ackers routinely sell stolen credentials or backdoor access to corporate
systems to any interested buyer in growing on-line markets. Like any other market, the
buying and selling of privileged access to compromised systems follows the law of
supply and demand.

Motivated by the large illicit profits from such sales, a�ackers are focusing their efforts
at the application and data level through commonly used ports such as 80 (HTTP), 443
(HTTPS) and 22 (SSH). This bypasses port-level firewalls, intrusion detection or
prevention systems and other security appliances designed to monitor and control
traffic between trusted and untrusted networks. Network-level devices are not tuned to
deal with contemporary application and data centric a�acks. In fact, according to
research performed by the SANS Technology Institute, a�acks such as those a�ributed
to the Anonymous and Lulz hacking groups could not be repelled by traditional
firewalls. In 2009, Gartner had warned that “the stateful protocol filtering and limited
application awareness offered by first generation firewalls are not effective in dealing
with current and emerging threats”.6

Weak perimeter controls provide a direct route to information-rich systems for
financially-motivated a�ackers. There are very few targets more prized than SAP, the
crown jewels of corporate systems. The components, ports, protocols and services of
SAP systems are widely known and easily accessible. Once a company is compromised,
a�ackers can readily apply the same techniques to other companies suspected to be
using similar configurations.

Taken together, the increasing prevalence of targeted application and data level at-
tacks that evade conventional controls, the lucrative market for stolen data and cre-
dentials, and the relative openness of SAP systems has created a rare combination of
circumstances that could be referred to as a perfect storm. The outcome of such a con-
vergence of events is likely to be catastrophic for companies caught in the midst of the
storm.

Since corporations are not obligated to disclose major data breaches resulting in the
loss of financial assets, intellectual property or sensitive information other than that
belonging to customers, it is not possible to put a figure on SAP data breaches.
Understandably, most organizations are unlikely to publicize such an event, presum-
ing they are even aware of any breach (given the sophistication of today’s a�acks,
many companies may be completely unaware of data breaches affecting their
systems). However, recent guidance issued by the U.S Securities and Exchange
Commission (SEC) should be viewed as a harbinger of a very different future.
Acknowledging that successful cyber a�acks could lead to lost revenue, litigation
and other financial costs, the SEC published clear guidelines in 2011 that urge public
companies to disclose accurate, comprehensive and timely information about cyber
risks and events that could impact the decisions of investors. 7

Organizations relying upon SAP applications should review their security profile in
light of these requirements. Protective measures that up to now have been focused
on internal risks to access, change control and configuration parameters should be
widened to tackle the entire landscape of threats faced by SAP systems.

Many of these threats are discussed in Chapters 1-10 of this Paper. Advice on counter-
measures is provided wherever possible and is strongly recommended.

Chapter 11 maps the vulnerabilities to specific SOX and PCI DSS requirements. This is
presented to enable organisations understand the impact of vulnerabilities in terms
of regulatory and industry compliance, as well as facilitate changes to audit and
compliance programs.

Chapter 12 discusses open source programs and other useful resources for reviewing
SAP security. It presents a compelling argument for the use of commercial tools and
services that examine hundreds of complex and highly vulnerable technical se�ings
in SAP. This includes vulnerability assessment services performed by Layer Seven
Security that provide business and technology owners with a comprehensive
analysis of over 400 SAP vulnerability areas. Such services are performed by highly
trained security professionals through patent-pending so�ware certified by SAP.

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

LAYER SEVEN SECURITY | PERFECT STORM

WHITE PAPER

LAYER SEVEN SECURITY

Figure 1.2: OWASP Top Ten Web Application
Security Risks 2010

The standard security baseline established for SAP systems does not adequately
safeguard organisations from contemporary threats. SAP has evolved from a narrow,
back-office system accessible exclusively through internal networks into a vast,
complex association of a seemingly infinite number of applications.

Security efforts up to now have been largely focused upon the enterprise application
known as SAP ERP. Today, ERP is only one of five interconnected enterprise
applications in SAP’s Business Suite. Many of these areas are uncharted territory for
security professionals.

The widening of SAP’s product offering has been accompanied by another more
dangerous trend: Internet connectivity. SAP R/3 has been Web-enabled since the
introduction of 3.1G in the 1990s. Today, companies leverage the Internet through SAP
to engage directly with customers, suppliers and other partners. As a result, business
processes increasingly stretch across corporate boundaries and data is no longer
concentrated within SAP but dispersed across a myriad of external systems connected
through the Web.

To perform this feat, SAP embraced Java, a more common programming language than
its own propriety code. It also adopted more open standards for communication and
database interfacing such as HTTP, SOAP/ XML and Open SQL. Finally, it built an
integration platform powerful enough to translate two languages and handle the
intense loads placed by both SAP’s own applications and external systems. This
platform was known as the SAP Web Application Server (Web AS), later renamed to the
Netweaver Application Server. In essence, the Web AS was no different from any other
web server. It served the same functions and crucially, suffered from the same
vulnerabilities.

The introduction of the Web AS, as well as Java and open standards, enabled SAP to
meet the demands for greater connectivity and accessibility. However, it has also
exposed the inherent weaknesses in legacy SAP services that were never designed to
withstand the threat of external a�ack and intensified the risks associated with other,
more well-known vulnerabilities.

This was reflected by a sudden, dramatic increase in the number of Security Notes. In
2007, SAP released approximately 20 Notes. By 2010, it had risen to almost 900. Today,
SAP routinely issues more Security Notes in a single month than released in any year
between 2000 and 2007.

5

Aside from the sheer quantity of Notes issued by SAP, other factors that raised
concerns included the type of vulnerabilities patched by the Notes which o�en
targeted communication components and protocols such as the Message Server,
Internet Communication Manager (ICM) and Remote Function Calls (RFC), as well as
areas such as database authentication, ABAP programming and password hashing.
Tellingly, they also targeted a�ack vectors associated with web applications including
SQL Injection, Cross-Site Scripting (XSS), Directory Traversal and Cross Site Request
Forgery (XSRF).

Web applications are the preferred target for external hackers looking for remote,
anonymous and accessible pathways to corporate applications and data stored in
backend servers. They are made even more a�ractive by low barriers to entry, o�en
requiring nothing more than a laptop and a browser. A�acks vectors are the methods
deployed by hackers to compromise system resources.

The Open Web Application Security Project (OWASP) is a widely respected,
not-for-profit body that is dedicated to supporting organisations develop and
maintain secure web applications. OWASP periodically publishes an analysis of the
Top Ten Most Critical Web Application Security Risks based on extensive industry
research. This study is widely regarded as the most authoritative, independent
analysis of the threat landscape for Internet applications. The most recent list is
summarized in Figure 1.2

If SAP systems are not patched, upgraded or otherwise secured, they are vulnerable to
every a�ack vector identified in the OWASP Top Ten. Furthermore, they are vulnerable
to four of the eight other application security risks singled out by OWASP in the study. 2
This will be illustrated in the following chapters which will examine lesser known SAP
vulnerabilities and provide practical advice on measures to counteract threats similar
to those o�en targeted at web applications to devastating effect. The millions of
customer and credit card records compromised during the well-publicized breaches at
Heartland Payment Systems, Sony and TJ Maxx are the tip of the iceberg. According to
U.S Congress reports, such cybercrime costs the U.S economy an estimated $8 billion a
year and resulted in the the� of $1 trillion worth of intellectual property from U.S
businesses.3

Incidences of data breach are increasing and growing in sophistication. According to a
recent study by the University of Toronto’s Rotman School of Business, “present day
threats routinely utilize sophisticated methods of invasion, evasion and propagation”.
The study also notes that threats are increasingly “designed for monetization, either
through the the� of corporate secrets or through the acquisition and abuse of
identities and credentials”.4

This echoed the findings of an earlier study performed by Verizon, the U.S Secret
Service and the Dutch High Tech Crime Unit which concluded that a�acks are generally
perpetrated by well-trained external agents using automated tools, supported by
organized, financially-motivated groups. It’s worth noting that the average direct and
indirect cost of a data breach calculated by the study was $7.2M.5 This includes
detection, investigation, notification, litigation and reputational harm, not to mention
lost business.

A�acks are not only targeted at systems housing large volumes of sensitive personal,
credit or banking information. Almost all companies are vulnerable, regardless of size
and industry. A�ackers routinely sell stolen credentials or backdoor access to corporate
systems to any interested buyer in growing on-line markets. Like any other market, the
buying and selling of privileged access to compromised systems follows the law of
supply and demand.

Motivated by the large illicit profits from such sales, a�ackers are focusing their efforts
at the application and data level through commonly used ports such as 80 (HTTP), 443
(HTTPS) and 22 (SSH). This bypasses port-level firewalls, intrusion detection or
prevention systems and other security appliances designed to monitor and control
traffic between trusted and untrusted networks. Network-level devices are not tuned to
deal with contemporary application and data centric a�acks. In fact, according to
research performed by the SANS Technology Institute, a�acks such as those a�ributed
to the Anonymous and Lulz hacking groups could not be repelled by traditional
firewalls. In 2009, Gartner had warned that “the stateful protocol filtering and limited
application awareness offered by first generation firewalls are not effective in dealing
with current and emerging threats”.6

Weak perimeter controls provide a direct route to information-rich systems for
financially-motivated a�ackers. There are very few targets more prized than SAP, the
crown jewels of corporate systems. The components, ports, protocols and services of
SAP systems are widely known and easily accessible. Once a company is compromised,
a�ackers can readily apply the same techniques to other companies suspected to be
using similar configurations.

Taken together, the increasing prevalence of targeted application and data level at-
tacks that evade conventional controls, the lucrative market for stolen data and cre-
dentials, and the relative openness of SAP systems has created a rare combination of
circumstances that could be referred to as a perfect storm. The outcome of such a con-
vergence of events is likely to be catastrophic for companies caught in the midst of the
storm.

Since corporations are not obligated to disclose major data breaches resulting in the
loss of financial assets, intellectual property or sensitive information other than that
belonging to customers, it is not possible to put a figure on SAP data breaches.
Understandably, most organizations are unlikely to publicize such an event, presum-
ing they are even aware of any breach (given the sophistication of today’s a�acks,
many companies may be completely unaware of data breaches affecting their
systems). However, recent guidance issued by the U.S Securities and Exchange
Commission (SEC) should be viewed as a harbinger of a very different future.
Acknowledging that successful cyber a�acks could lead to lost revenue, litigation
and other financial costs, the SEC published clear guidelines in 2011 that urge public
companies to disclose accurate, comprehensive and timely information about cyber
risks and events that could impact the decisions of investors. 7

Organizations relying upon SAP applications should review their security profile in
light of these requirements. Protective measures that up to now have been focused
on internal risks to access, change control and configuration parameters should be
widened to tackle the entire landscape of threats faced by SAP systems.

Many of these threats are discussed in Chapters 1-10 of this Paper. Advice on counter-
measures is provided wherever possible and is strongly recommended.

Chapter 11 maps the vulnerabilities to specific SOX and PCI DSS requirements. This is
presented to enable organisations understand the impact of vulnerabilities in terms
of regulatory and industry compliance, as well as facilitate changes to audit and
compliance programs.

Chapter 12 discusses open source programs and other useful resources for reviewing
SAP security. It presents a compelling argument for the use of commercial tools and
services that examine hundreds of complex and highly vulnerable technical se�ings
in SAP. This includes vulnerability assessment services performed by Layer Seven
Security that provide business and technology owners with a comprehensive
analysis of over 400 SAP vulnerability areas. Such services are performed by highly
trained security professionals through patent-pending so�ware certified by SAP.

LAYER SEVEN SECURITY | PERFECT STORM

Injection

Cross Site Scripting (XSS)

Broken Authenitication and Session
Management

Insecure Direct Object References

Cross Site Request Factory (CSRF)

Security Misconfiguration (NEW)

Failure to Restrict URL Access

Unvalid Redirects & Forwards (NEW)

Insecure Cryptographic Storage

Insufficient Transport Layer
Protection

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

900

300

225

150

75

0

Figure 1.1: SAP Security Notes, 2001 – 2010.

The standard security baseline established for SAP systems does not adequately
safeguard organisations from contemporary threats. SAP has evolved from a narrow,
back-office system accessible exclusively through internal networks into a vast,
complex association of a seemingly infinite number of applications.

Security efforts up to now have been largely focused upon the enterprise application
known as SAP ERP. Today, ERP is only one of five interconnected enterprise
applications in SAP’s Business Suite. Many of these areas are uncharted territory for
security professionals.

The widening of SAP’s product offering has been accompanied by another more
dangerous trend: Internet connectivity. SAP R/3 has been Web-enabled since the
introduction of 3.1G in the 1990s. Today, companies leverage the Internet through SAP
to engage directly with customers, suppliers and other partners. As a result, business
processes increasingly stretch across corporate boundaries and data is no longer
concentrated within SAP but dispersed across a myriad of external systems connected
through the Web.

To perform this feat, SAP embraced Java, a more common programming language than
its own propriety code. It also adopted more open standards for communication and
database interfacing such as HTTP, SOAP/ XML and Open SQL. Finally, it built an
integration platform powerful enough to translate two languages and handle the
intense loads placed by both SAP’s own applications and external systems. This
platform was known as the SAP Web Application Server (Web AS), later renamed to the
Netweaver Application Server. In essence, the Web AS was no different from any other
web server. It served the same functions and crucially, suffered from the same
vulnerabilities.

The introduction of the Web AS, as well as Java and open standards, enabled SAP to
meet the demands for greater connectivity and accessibility. However, it has also
exposed the inherent weaknesses in legacy SAP services that were never designed to
withstand the threat of external a�ack and intensified the risks associated with other,
more well-known vulnerabilities.

This was reflected by a sudden, dramatic increase in the number of Security Notes. In
2007, SAP released approximately 20 Notes. By 2010, it had risen to almost 900. Today,
SAP routinely issues more Security Notes in a single month than released in any year
between 2000 and 2007.

6

Aside from the sheer quantity of Notes issued by SAP, other factors that raised
concerns included the type of vulnerabilities patched by the Notes which o�en
targeted communication components and protocols such as the Message Server,
Internet Communication Manager (ICM) and Remote Function Calls (RFC), as well as
areas such as database authentication, ABAP programming and password hashing.
Tellingly, they also targeted a�ack vectors associated with web applications including
SQL Injection, Cross-Site Scripting (XSS), Directory Traversal and Cross Site Request
Forgery (XSRF).

Web applications are the preferred target for external hackers looking for remote,
anonymous and accessible pathways to corporate applications and data stored in
backend servers. They are made even more a�ractive by low barriers to entry, o�en
requiring nothing more than a laptop and a browser. A�acks vectors are the methods
deployed by hackers to compromise system resources.

The Open Web Application Security Project (OWASP) is a widely respected,
not-for-profit body that is dedicated to supporting organisations develop and
maintain secure web applications. OWASP periodically publishes an analysis of the
Top Ten Most Critical Web Application Security Risks based on extensive industry
research. This study is widely regarded as the most authoritative, independent
analysis of the threat landscape for Internet applications. The most recent list is
summarized in Figure 1.2

If SAP systems are not patched, upgraded or otherwise secured, they are vulnerable to
every a�ack vector identified in the OWASP Top Ten. Furthermore, they are vulnerable
to four of the eight other application security risks singled out by OWASP in the study. 2
This will be illustrated in the following chapters which will examine lesser known SAP
vulnerabilities and provide practical advice on measures to counteract threats similar
to those o�en targeted at web applications to devastating effect. The millions of
customer and credit card records compromised during the well-publicized breaches at
Heartland Payment Systems, Sony and TJ Maxx are the tip of the iceberg. According to
U.S Congress reports, such cybercrime costs the U.S economy an estimated $8 billion a
year and resulted in the the� of $1 trillion worth of intellectual property from U.S
businesses.3

Incidences of data breach are increasing and growing in sophistication. According to a
recent study by the University of Toronto’s Rotman School of Business, “present day
threats routinely utilize sophisticated methods of invasion, evasion and propagation”.
The study also notes that threats are increasingly “designed for monetization, either
through the the� of corporate secrets or through the acquisition and abuse of
identities and credentials”.4

This echoed the findings of an earlier study performed by Verizon, the U.S Secret
Service and the Dutch High Tech Crime Unit which concluded that a�acks are generally
perpetrated by well-trained external agents using automated tools, supported by
organized, financially-motivated groups. It’s worth noting that the average direct and
indirect cost of a data breach calculated by the study was $7.2M.5 This includes
detection, investigation, notification, litigation and reputational harm, not to mention
lost business.

A�acks are not only targeted at systems housing large volumes of sensitive personal,
credit or banking information. Almost all companies are vulnerable, regardless of size
and industry. A�ackers routinely sell stolen credentials or backdoor access to corporate
systems to any interested buyer in growing on-line markets. Like any other market, the
buying and selling of privileged access to compromised systems follows the law of
supply and demand.

Motivated by the large illicit profits from such sales, a�ackers are focusing their efforts
at the application and data level through commonly used ports such as 80 (HTTP), 443
(HTTPS) and 22 (SSH). This bypasses port-level firewalls, intrusion detection or
prevention systems and other security appliances designed to monitor and control
traffic between trusted and untrusted networks. Network-level devices are not tuned to
deal with contemporary application and data centric a�acks. In fact, according to
research performed by the SANS Technology Institute, a�acks such as those a�ributed
to the Anonymous and Lulz hacking groups could not be repelled by traditional
firewalls. In 2009, Gartner had warned that “the stateful protocol filtering and limited
application awareness offered by first generation firewalls are not effective in dealing
with current and emerging threats”.6

Weak perimeter controls provide a direct route to information-rich systems for
financially-motivated a�ackers. There are very few targets more prized than SAP, the
crown jewels of corporate systems. The components, ports, protocols and services of
SAP systems are widely known and easily accessible. Once a company is compromised,
a�ackers can readily apply the same techniques to other companies suspected to be
using similar configurations.

Taken together, the increasing prevalence of targeted application and data level at-
tacks that evade conventional controls, the lucrative market for stolen data and cre-
dentials, and the relative openness of SAP systems has created a rare combination of
circumstances that could be referred to as a perfect storm. The outcome of such a con-
vergence of events is likely to be catastrophic for companies caught in the midst of the
storm.

Since corporations are not obligated to disclose major data breaches resulting in the
loss of financial assets, intellectual property or sensitive information other than that
belonging to customers, it is not possible to put a figure on SAP data breaches.
Understandably, most organizations are unlikely to publicize such an event, presum-
ing they are even aware of any breach (given the sophistication of today’s a�acks,
many companies may be completely unaware of data breaches affecting their
systems). However, recent guidance issued by the U.S Securities and Exchange
Commission (SEC) should be viewed as a harbinger of a very different future.
Acknowledging that successful cyber a�acks could lead to lost revenue, litigation
and other financial costs, the SEC published clear guidelines in 2011 that urge public
companies to disclose accurate, comprehensive and timely information about cyber
risks and events that could impact the decisions of investors. 7

Organizations relying upon SAP applications should review their security profile in
light of these requirements. Protective measures that up to now have been focused
on internal risks to access, change control and configuration parameters should be
widened to tackle the entire landscape of threats faced by SAP systems.

Many of these threats are discussed in Chapters 1-10 of this Paper. Advice on counter-
measures is provided wherever possible and is strongly recommended.

Chapter 11 maps the vulnerabilities to specific SOX and PCI DSS requirements. This is
presented to enable organisations understand the impact of vulnerabilities in terms
of regulatory and industry compliance, as well as facilitate changes to audit and
compliance programs.

Chapter 12 discusses open source programs and other useful resources for reviewing
SAP security. It presents a compelling argument for the use of commercial tools and
services that examine hundreds of complex and highly vulnerable technical se�ings
in SAP. This includes vulnerability assessment services performed by Layer Seven
Security that provide business and technology owners with a comprehensive
analysis of over 400 SAP vulnerability areas. Such services are performed by highly
trained security professionals through patent-pending so�ware certified by SAP.

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

LAYER SEVEN SECURITY | PERFECT STORM

The standard security baseline established for SAP systems does not adequately
safeguard organisations from contemporary threats. SAP has evolved from a narrow,
back-office system accessible exclusively through internal networks into a vast,
complex association of a seemingly infinite number of applications.

Security efforts up to now have been largely focused upon the enterprise application
known as SAP ERP. Today, ERP is only one of five interconnected enterprise
applications in SAP’s Business Suite. Many of these areas are uncharted territory for
security professionals.

The widening of SAP’s product offering has been accompanied by another more
dangerous trend: Internet connectivity. SAP R/3 has been Web-enabled since the
introduction of 3.1G in the 1990s. Today, companies leverage the Internet through SAP
to engage directly with customers, suppliers and other partners. As a result, business
processes increasingly stretch across corporate boundaries and data is no longer
concentrated within SAP but dispersed across a myriad of external systems connected
through the Web.

To perform this feat, SAP embraced Java, a more common programming language than
its own propriety code. It also adopted more open standards for communication and
database interfacing such as HTTP, SOAP/ XML and Open SQL. Finally, it built an
integration platform powerful enough to translate two languages and handle the
intense loads placed by both SAP’s own applications and external systems. This
platform was known as the SAP Web Application Server (Web AS), later renamed to the
Netweaver Application Server. In essence, the Web AS was no different from any other
web server. It served the same functions and crucially, suffered from the same
vulnerabilities.

The introduction of the Web AS, as well as Java and open standards, enabled SAP to
meet the demands for greater connectivity and accessibility. However, it has also
exposed the inherent weaknesses in legacy SAP services that were never designed to
withstand the threat of external a�ack and intensified the risks associated with other,
more well-known vulnerabilities.

This was reflected by a sudden, dramatic increase in the number of Security Notes. In
2007, SAP released approximately 20 Notes. By 2010, it had risen to almost 900. Today,
SAP routinely issues more Security Notes in a single month than released in any year
between 2000 and 2007.

7

Aside from the sheer quantity of Notes issued by SAP, other factors that raised
concerns included the type of vulnerabilities patched by the Notes which o�en
targeted communication components and protocols such as the Message Server,
Internet Communication Manager (ICM) and Remote Function Calls (RFC), as well as
areas such as database authentication, ABAP programming and password hashing.
Tellingly, they also targeted a�ack vectors associated with web applications including
SQL Injection, Cross-Site Scripting (XSS), Directory Traversal and Cross Site Request
Forgery (XSRF).

Web applications are the preferred target for external hackers looking for remote,
anonymous and accessible pathways to corporate applications and data stored in
backend servers. They are made even more a�ractive by low barriers to entry, o�en
requiring nothing more than a laptop and a browser. A�acks vectors are the methods
deployed by hackers to compromise system resources.

The Open Web Application Security Project (OWASP) is a widely respected,
not-for-profit body that is dedicated to supporting organisations develop and
maintain secure web applications. OWASP periodically publishes an analysis of the
Top Ten Most Critical Web Application Security Risks based on extensive industry
research. This study is widely regarded as the most authoritative, independent
analysis of the threat landscape for Internet applications. The most recent list is
summarized in Figure 1.2

If SAP systems are not patched, upgraded or otherwise secured, they are vulnerable to
every a�ack vector identified in the OWASP Top Ten. Furthermore, they are vulnerable
to four of the eight other application security risks singled out by OWASP in the study. 2
This will be illustrated in the following chapters which will examine lesser known SAP
vulnerabilities and provide practical advice on measures to counteract threats similar
to those o�en targeted at web applications to devastating effect. The millions of
customer and credit card records compromised during the well-publicized breaches at
Heartland Payment Systems, Sony and TJ Maxx are the tip of the iceberg. According to
U.S Congress reports, such cybercrime costs the U.S economy an estimated $8 billion a
year and resulted in the the� of $1 trillion worth of intellectual property from U.S
businesses.3

Incidences of data breach are increasing and growing in sophistication. According to a
recent study by the University of Toronto’s Rotman School of Business, “present day
threats routinely utilize sophisticated methods of invasion, evasion and propagation”.
The study also notes that threats are increasingly “designed for monetization, either
through the the� of corporate secrets or through the acquisition and abuse of
identities and credentials”.4

This echoed the findings of an earlier study performed by Verizon, the U.S Secret
Service and the Dutch High Tech Crime Unit which concluded that a�acks are generally
perpetrated by well-trained external agents using automated tools, supported by
organized, financially-motivated groups. It’s worth noting that the average direct and
indirect cost of a data breach calculated by the study was $7.2M.5 This includes
detection, investigation, notification, litigation and reputational harm, not to mention
lost business.

A�acks are not only targeted at systems housing large volumes of sensitive personal,
credit or banking information. Almost all companies are vulnerable, regardless of size
and industry. A�ackers routinely sell stolen credentials or backdoor access to corporate
systems to any interested buyer in growing on-line markets. Like any other market, the
buying and selling of privileged access to compromised systems follows the law of
supply and demand.

Motivated by the large illicit profits from such sales, a�ackers are focusing their efforts
at the application and data level through commonly used ports such as 80 (HTTP), 443
(HTTPS) and 22 (SSH). This bypasses port-level firewalls, intrusion detection or
prevention systems and other security appliances designed to monitor and control
traffic between trusted and untrusted networks. Network-level devices are not tuned to
deal with contemporary application and data centric a�acks. In fact, according to
research performed by the SANS Technology Institute, a�acks such as those a�ributed
to the Anonymous and Lulz hacking groups could not be repelled by traditional
firewalls. In 2009, Gartner had warned that “the stateful protocol filtering and limited
application awareness offered by first generation firewalls are not effective in dealing
with current and emerging threats”.6

Weak perimeter controls provide a direct route to information-rich systems for
financially-motivated a�ackers. There are very few targets more prized than SAP, the
crown jewels of corporate systems. The components, ports, protocols and services of
SAP systems are widely known and easily accessible. Once a company is compromised,
a�ackers can readily apply the same techniques to other companies suspected to be
using similar configurations.

Taken together, the increasing prevalence of targeted application and data level at-
tacks that evade conventional controls, the lucrative market for stolen data and cre-
dentials, and the relative openness of SAP systems has created a rare combination of
circumstances that could be referred to as a perfect storm. The outcome of such a con-
vergence of events is likely to be catastrophic for companies caught in the midst of the
storm.

Since corporations are not obligated to disclose major data breaches resulting in the
loss of financial assets, intellectual property or sensitive information other than that
belonging to customers, it is not possible to put a figure on SAP data breaches.
Understandably, most organizations are unlikely to publicize such an event, presum-
ing they are even aware of any breach (given the sophistication of today’s a�acks,
many companies may be completely unaware of data breaches affecting their
systems). However, recent guidance issued by the U.S Securities and Exchange
Commission (SEC) should be viewed as a harbinger of a very different future.
Acknowledging that successful cyber a�acks could lead to lost revenue, litigation
and other financial costs, the SEC published clear guidelines in 2011 that urge public
companies to disclose accurate, comprehensive and timely information about cyber
risks and events that could impact the decisions of investors. 7

Organizations relying upon SAP applications should review their security profile in
light of these requirements. Protective measures that up to now have been focused
on internal risks to access, change control and configuration parameters should be
widened to tackle the entire landscape of threats faced by SAP systems.

Many of these threats are discussed in Chapters 1-10 of this Paper. Advice on counter-
measures is provided wherever possible and is strongly recommended.

Chapter 11 maps the vulnerabilities to specific SOX and PCI DSS requirements. This is
presented to enable organisations understand the impact of vulnerabilities in terms
of regulatory and industry compliance, as well as facilitate changes to audit and
compliance programs.

Chapter 12 discusses open source programs and other useful resources for reviewing
SAP security. It presents a compelling argument for the use of commercial tools and
services that examine hundreds of complex and highly vulnerable technical se�ings
in SAP. This includes vulnerability assessment services performed by Layer Seven
Security that provide business and technology owners with a comprehensive
analysis of over 400 SAP vulnerability areas. Such services are performed by highly
trained security professionals through patent-pending so�ware certified by SAP.

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

LAYER SEVEN SECURITY | PERFECT STORM

Although SAP can be configured to work with almost any database including its own
offerings, Hana, MaxDB and Sybase, most customers choose to power their systems
with Oracle databases. This is not without good reason: Oracle is widely considered to
have an edge over competitors in areas such as performance, durability and support.

Access to Oracle is usually handled through database authentication which, as the
name suggests, means that that you need to provide a username and password that
matches credentials stored in the database. All default Oracle accounts use database
authentication. However, Oracle can be configured to accept operating system authen-
tication based on trust relationships.

SAP systems use a single user to access the database: SAPR3 or SAP. The user password
is stored in the SAPUSER table. In order to access the database and retrieve the pass-
word for the SAPR3/ SAP user, SAP leverages the OPS$ mechanism. SAP first logons to
Oracle using an OPS$ user ID and then logs back on with the retrieved credentials for
the SAPR3/ SAP user. This applies to both UNIX and Windows environments. In the
la�er case, the user would be OPS$<domain>\<sapsid>adm.

As well as se�ing up the connection to the R/3 database, OPS$ is also used to access BR
TOOLS such as BRBACKUP, BRCONNECT and BRRECOVER. These are SAP tools used
to manage data in Oracle. One of the most interesting is BRCONNECT which can be
used to change passwords for SAP database users and stop/ start Oracle.

As stated earlier, Oracle can allow certain users to authenticate against the operating
system rather than the database. In other words, Oracle can be configured to trust the
OS to validate a user’s logon credentials and allow access to the database without sup-
plying a password, providing the OS user is a valid database user. In this scenario, the
database will look up an Oracle ID that matches the name of the OS user and make a
connection if there is a match. Note that in most cases the Oracle ID is the same as the
SAP System ID (SSID).

Operating system authentication can be either Local or Remote. Local OS authentica-
tion uses the database server’s OS to authenticate users. Remote OS authentication al-
lows any client that can make a network connection to the database to authenticate
users. Anybody with administrative access to their machine can create a user on their
local box with the same name as an Oracle user and connect to the database. They
would merely need (1) host name, (2) SSID and then bank on (3) the Oracle ID being the
same as (2) which is a very safe bet. This would provide an a�acker with privileged re-
mote access to the database without authenticating directly against the database us-
ing a password.

Keep in mind that client separation doesn’t exist at the database level. In other words,
data can be viewed and changed across all clients in the database. A�er compromising
a database server, an a�acker may be able to hop to other connected servers if remote
shell (rsh)is enabled.

REMOTE AUTHENTICATIONCHAPTER ONE

8

The risk is obvious and restricted only by the imagination of the a�acker. It can range
from shu�ing down the database to complete data the� or corruption. In fact, the risk
is so great Oracle deprecated remote authentication in version 11g.

You can check whether remote authentication is enabled in your Oracle instance by re-
viewing the REMOTE_OS_AUTHENT parameter. Oracle will trust connections from
remote systems if the parameter is set to TRUE. In all cases, the parameter should read
TRUE. This is because SAP requires remote authentication to function properly with
Oracle databases. Therefore, you should only allow trusted servers to authenticate re-
motely with your database server. This can be achieved by configuring database access
in the protocol.ora file or, if you’re using Oracle 9i or later, the sqlnet.ora file.8

The content of the file should read as follows:

Addresses can be host names or numeric IP addresses. You cannot specify IP ranges or
network masks. You can choose whether to use invited nodes as part of a whitelist ap-
proach or list excluded nodes if you use decide to opt for a blacklist.

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

LAYER SEVEN SECURITY | PERFECT STORM

Although SAP can be configured to work with almost any database including its own
offerings, Hana, MaxDB and Sybase, most customers choose to power their systems
with Oracle databases. This is not without good reason: Oracle is widely considered to
have an edge over competitors in areas such as performance, durability and support.

Access to Oracle is usually handled through database authentication which, as the
name suggests, means that that you need to provide a username and password that
matches credentials stored in the database. All default Oracle accounts use database
authentication. However, Oracle can be configured to accept operating system authen-
tication based on trust relationships.

SAP systems use a single user to access the database: SAPR3 or SAP. The user password
is stored in the SAPUSER table. In order to access the database and retrieve the pass-
word for the SAPR3/ SAP user, SAP leverages the OPS$ mechanism. SAP first logons to
Oracle using an OPS$ user ID and then logs back on with the retrieved credentials for
the SAPR3/ SAP user. This applies to both UNIX and Windows environments. In the
la�er case, the user would be OPS$<domain>\<sapsid>adm.

As well as se�ing up the connection to the R/3 database, OPS$ is also used to access BR
TOOLS such as BRBACKUP, BRCONNECT and BRRECOVER. These are SAP tools used
to manage data in Oracle. One of the most interesting is BRCONNECT which can be
used to change passwords for SAP database users and stop/ start Oracle.

As stated earlier, Oracle can allow certain users to authenticate against the operating
system rather than the database. In other words, Oracle can be configured to trust the
OS to validate a user’s logon credentials and allow access to the database without sup-
plying a password, providing the OS user is a valid database user. In this scenario, the
database will look up an Oracle ID that matches the name of the OS user and make a
connection if there is a match. Note that in most cases the Oracle ID is the same as the
SAP System ID (SSID).

Operating system authentication can be either Local or Remote. Local OS authentica-
tion uses the database server’s OS to authenticate users. Remote OS authentication al-
lows any client that can make a network connection to the database to authenticate
users. Anybody with administrative access to their machine can create a user on their
local box with the same name as an Oracle user and connect to the database. They
would merely need (1) host name, (2) SSID and then bank on (3) the Oracle ID being the
same as (2) which is a very safe bet. This would provide an a�acker with privileged re-
mote access to the database without authenticating directly against the database us-
ing a password.

Keep in mind that client separation doesn’t exist at the database level. In other words,
data can be viewed and changed across all clients in the database. A�er compromising
a database server, an a�acker may be able to hop to other connected servers if remote
shell (rsh)is enabled.

The risk is obvious and restricted only by the imagination of the a�acker. It can range
from shu�ing down the database to complete data the� or corruption. In fact, the risk
is so great Oracle deprecated remote authentication in version 11g.

You can check whether remote authentication is enabled in your Oracle instance by re-
viewing the REMOTE_OS_AUTHENT parameter. Oracle will trust connections from
remote systems if the parameter is set to TRUE. In all cases, the parameter should read
TRUE. This is because SAP requires remote authentication to function properly with
Oracle databases. Therefore, you should only allow trusted servers to authenticate re-
motely with your database server. This can be achieved by configuring database access
in the protocol.ora file or, if you’re using Oracle 9i or later, the sqlnet.ora file.8

The content of the file should read as follows:

Addresses can be host names or numeric IP addresses. You cannot specify IP ranges or
network masks. You can choose whether to use invited nodes as part of a whitelist ap-
proach or list excluded nodes if you use decide to opt for a blacklist.

9

tcp.validnode_checking=yes
tcp.invited_nodes=(address1, address2,)
tcp.excluded_nodes=(address1, address2,)

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

LAYER SEVEN SECURITY | PERFECT STORM

RFC is the acronym for Remote Function Call, the interface driving communications
within SAP and between SAP and external systems. Communication can be synchro-
nous or asynchronous, transactional or queued, but in all cases is performed through
TCP/IP or CPI-C connections.

ABAP function modules need to be remote-enabled to support RFC. Destinations are
stored in table RFCDES, accessible through transaction SM59. All communications flow
through the Gateway Server which includes a Reader to receive and process RFC re-
quests, a Work Process to handle communication with IBM mainframes and a Monitor
to analyze and administer the Gateway.

RFC calls between SAP systems can be untrusted or trusted. Untrusted calls are au-
thenticated and authorized through the S_ICF object in the client system and S_RFC in
the server system. No authentication is required for trusted calls since the server
trusts the client.

Default RFC communication is performed in clear-text. Therefore, techniques such as
network sniffing can be used by a�ackers to seize credit card, bank, payroll and other
confidential data, as well as the credentials required to logon to an SAP system: client,
username and password. Passwords are obfuscated with a XOR algorithm using a fixed
key. XOR is not recommended for the encryption of sensitive data. In fact, the XOR key
to decrypt SAP passwords transmi�ed through RFC is widely available on the Web.

Traffic sniffing on unencrypted data flows is an example of a passive a�ack vector.
However, RFC is also vulnerable to active vectors which o�en exploit functions avail-
able in every external RFC server through the SRFC special function group. These
functions can be called remotely and anonymously since authority checks are not con-
figured by default and rarely enabled by administrators. They include:

1. RFC_PING. RFC_PING can be used to detect the availability of RFC interfaces be-
tween internal and external systems, which is usually the first step taken by an at-
tacker a�empting to exploit SAP vulnerabilities.

2. RFC_SYSTEM_INFO. This function returns information related to the library and
its environment. This can include the SAP kernel version, host name, time zone, da-
tabase engine, database host, SAP system ID and operating system. Such informa-
tion can be used by a hacker to launch a targeted a�ack against an SAP system.

3. RFC_TRUSTED_SYSTEM_SECURITY. This function was developed by SAP for in-
ternal use only. It can be used by a�ackers to examine Windows domains, groups
and user accounts in external servers.

4. RFC_SET_REG_SERVER_PROPERTY. If called with the appropriate parameters,
this function can provide an a�acker with exclusive use of an RFC server, leading to
denial of service.

SECURING REMOTE FUNCTION CALLSCHAPTER TWO

10

5. RFC_START_GUI

6. SYSTEM_CREATE_INSTANCE

7. RFC_START_PROGRAM

These functions are vulnerable to buffer overflows which could enable a�ackers to ex-
ecute remote commands over SAP servers.

Given the danger associated with these functions, SAP released a number of Notes to
patch the RFC library. 9 SAP also developed Secure Network Communications (SNC) to
encrypt network traffic using SAP protocols including RFC. You should also restrict ac-
cess to transaction SM59 and table RFCDES, as well as enable the use of authorization
object S_RFCACL to improve the security of trusted RFC calls.

Our final recommendation is to take a long hard look at Notes 43417, 618516, and 1140031.
These Notes are designed to address vulnerabilities in the RFC So�ware Development
Kit (SDK), especially RFCEXEC, which poses a major security risk since it enables the
remote execution of operating system commands. RFCEXEC includes functions such
as REMOTE_PIPE, REMOTE_FILE, and REMOTE_EXEC.

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

LAYER SEVEN SECURITY | PERFECT STORM

RFC is the acronym for Remote Function Call, the interface driving communications
within SAP and between SAP and external systems. Communication can be synchro-
nous or asynchronous, transactional or queued, but in all cases is performed through
TCP/IP or CPI-C connections.

ABAP function modules need to be remote-enabled to support RFC. Destinations are
stored in table RFCDES, accessible through transaction SM59. All communications flow
through the Gateway Server which includes a Reader to receive and process RFC re-
quests, a Work Process to handle communication with IBM mainframes and a Monitor
to analyze and administer the Gateway.

RFC calls between SAP systems can be untrusted or trusted. Untrusted calls are au-
thenticated and authorized through the S_ICF object in the client system and S_RFC in
the server system. No authentication is required for trusted calls since the server
trusts the client.

Default RFC communication is performed in clear-text. Therefore, techniques such as
network sniffing can be used by a�ackers to seize credit card, bank, payroll and other
confidential data, as well as the credentials required to logon to an SAP system: client,
username and password. Passwords are obfuscated with a XOR algorithm using a fixed
key. XOR is not recommended for the encryption of sensitive data. In fact, the XOR key
to decrypt SAP passwords transmi�ed through RFC is widely available on the Web.

Traffic sniffing on unencrypted data flows is an example of a passive a�ack vector.
However, RFC is also vulnerable to active vectors which o�en exploit functions avail-
able in every external RFC server through the SRFC special function group. These
functions can be called remotely and anonymously since authority checks are not con-
figured by default and rarely enabled by administrators. They include:

1. RFC_PING. RFC_PING can be used to detect the availability of RFC interfaces be-
tween internal and external systems, which is usually the first step taken by an at-
tacker a�empting to exploit SAP vulnerabilities.

2. RFC_SYSTEM_INFO. This function returns information related to the library and
its environment. This can include the SAP kernel version, host name, time zone, da-
tabase engine, database host, SAP system ID and operating system. Such informa-
tion can be used by a hacker to launch a targeted a�ack against an SAP system.

3. RFC_TRUSTED_SYSTEM_SECURITY. This function was developed by SAP for in-
ternal use only. It can be used by a�ackers to examine Windows domains, groups
and user accounts in external servers.

4. RFC_SET_REG_SERVER_PROPERTY. If called with the appropriate parameters,
this function can provide an a�acker with exclusive use of an RFC server, leading to
denial of service.

5. RFC_START_GUI

6. SYSTEM_CREATE_INSTANCE

7. RFC_START_PROGRAM

These functions are vulnerable to buffer overflows which could enable a�ackers to ex-
ecute remote commands over SAP servers.

Given the danger associated with these functions, SAP released a number of Notes to
patch the RFC library. 9 SAP also developed Secure Network Communications (SNC) to
encrypt network traffic using SAP protocols including RFC. You should also restrict ac-
cess to transaction SM59 and table RFCDES, as well as enable the use of authorization
object S_RFCACL to improve the security of trusted RFC calls.

Our final recommendation is to take a long hard look at Notes 43417, 618516, and 1140031.
These Notes are designed to address vulnerabilities in the RFC So�ware Development
Kit (SDK), especially RFCEXEC, which poses a major security risk since it enables the
remote execution of operating system commands. RFCEXEC includes functions such
as REMOTE_PIPE, REMOTE_FILE, and REMOTE_EXEC.

11

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

LAYER SEVEN SECURITY | PERFECT STORM

The flow of communications traffic within SAP systems and between SAP and external
systems is managed by the Gateway Server. Remote access to the Gateway Monitor, a
vital component of the Server, is enabled by default in SAP Kernels 6.20 and below. The
specific configuration parameter to watch out for is gw/monitor = 2 Remote access en-
abled. Administrators don’t always change these and other default se�ings, which al-
low the remote registration of any external server using the same ID as any other reg-
istered server. This exposes the Gateway to so-called Evil Twin a�acks.

Such a�acks can unfold in several ways but an easy and simple variation involves an
a�acker blocking the serving of RFC requests by a legitimate registered server, regis-
tering a server with the Gateway using the same program ID as the server that was
blocked a few moments ago and then waiting for the Gateway to route RFC calls in-
tended for the legitimate server to the illegitimate server, registered with the same
name. This requires li�le more than a personal laptop, an SSH client such as Pu�y and
some basic credentials for target systems which an a�acker can sniff from unencrypt-
ed traffic flows or obtain directly from the Gateway.

An Evil Twin a�ack can lead to denial of service or the leakage of sensitive data includ-
ing logon credentials contained in open communications traffic. These risks are pres-
ent even if external servers are located in secure network segments behind hardened
firewalls.

The Gateway is also vulnerable to Man-In-The-Middle (MITM) a�acks that use some of
the same methods as Evil Twin a�acks but are far stealthier and therefore, more diffi-
cult to detect. This usually involves an a�acker adjusting RFC calls intended for a le-
gitimate external server before returning the results to the requesting client through
the Gateway. Such an a�ack could be used to modify RFC requests and/or the data re-
turned to SAP and other clients. It’s important to remember that data in the context of
RFC communication can be sensitive information such as financial results, bank ac-
counts, credit card numbers, customer records and employee salaries.

O�en a server cannot complete an RFC request without obtaining more information
from the requesting client through a call-back. When doing so, the server bypasses au-
thentication in the client and assumes the same privileges as the user that was used by
the client to initiate the call. This can have dire consequences if the client is an SAP
Application Server and the user has SAP_ALL authorizations.

This illustrates how merely enabling the registration of external RFC servers on the
Gateway can be exploited by an a�acker to gain complete control over an SAP system.

You can disable remote access to the Gateway Monitor with the following parameter:
gw/monitor = 1 Local access only. You can also restrict the ability to register servers
with the Gateway using a whitelist approach through the gw/sec_info and gw/reg_info
files found in the data dictionary of your SAP instance. These files should be periodi-
cally reviewed for illicit changes. For more information, refer to SAP Notes 110612 and
64016.

EVIL TWIN, MAN-IN-THE-MIDDLE
AND OTHER ATTACKS

CHAPTER THREE

12

In addition, you should ensure that RFC users are setup as system rather than dialog
users to limit their ability to interact with SAP, although this may not be possible in all
cases. You should also ensure they have the minimal level of rights in target systems to
perform their functions. It also good practice to review the list of RFC users since users
are o�en replicated in multiple systems without any business need during cross-
system synchronization.

Finally, we recommend locking down access to RFC and Gateway trace files located in
the WORK directory of the application server. These files o�en contain important se-
curity and runtime information such as usernames and passwords. To learn how to
perform this, refer to SAP Note 532918.

The Message Server is primarily a load balancer for application servers. It can be found
on the central instance, usually configured at port 3600. Unlike the Gateway Monitor,
remote access to the message server is disabled by default. You can verify this hasn’t
changed by checking the ms/monitor parameter which should be set to 0 rather than 1.
However, similar to the Gateway, the Message Server allows anyone to register an ap-
plication server from any location. The ACL for the Server should be an extensive
whitelist specifying all host names, domains, IP addresses and/or subnetwork masks
from which application servers are allowed to log on to the message server. Contrast
this to the following default in ms/acl_info:

HOST=*

This exposes the Message Server to the following a�ack:

1. An a�acker registers a rogue computer with the Message Server.

2. The rouge computer sends load information to the Server, making sure to let the
Server know that it has plenty of capacity.

3. Since the Message Server is configured to distribute requests to servers with the
least loads, the a�acker waits for the Server to redirect a stream of business traffic
to the rogue computer, most likely in plain text.

This highlights the importance of properly configuring the Message Server ACL to re-
strict connections to the service. You can augment a strong ACL with the SAProuter
which works as an application-level gateway or reverse proxy, controlling connections
with SAP systems.

The SAProuter route permission table should be used to define source and target IP ad-
dresses, SNC encryption, protocols and password authentication. Remember to allow
only external connections using the SAP protocol and round off the list with an appro-
priate deny-all rule.

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

LAYER SEVEN SECURITY | PERFECT STORM

The flow of communications traffic within SAP systems and between SAP and external
systems is managed by the Gateway Server. Remote access to the Gateway Monitor, a
vital component of the Server, is enabled by default in SAP Kernels 6.20 and below. The
specific configuration parameter to watch out for is gw/monitor = 2 Remote access en-
abled. Administrators don’t always change these and other default se�ings, which al-
low the remote registration of any external server using the same ID as any other reg-
istered server. This exposes the Gateway to so-called Evil Twin a�acks.

Such a�acks can unfold in several ways but an easy and simple variation involves an
a�acker blocking the serving of RFC requests by a legitimate registered server, regis-
tering a server with the Gateway using the same program ID as the server that was
blocked a few moments ago and then waiting for the Gateway to route RFC calls in-
tended for the legitimate server to the illegitimate server, registered with the same
name. This requires li�le more than a personal laptop, an SSH client such as Pu�y and
some basic credentials for target systems which an a�acker can sniff from unencrypt-
ed traffic flows or obtain directly from the Gateway.

An Evil Twin a�ack can lead to denial of service or the leakage of sensitive data includ-
ing logon credentials contained in open communications traffic. These risks are pres-
ent even if external servers are located in secure network segments behind hardened
firewalls.

The Gateway is also vulnerable to Man-In-The-Middle (MITM) a�acks that use some of
the same methods as Evil Twin a�acks but are far stealthier and therefore, more diffi-
cult to detect. This usually involves an a�acker adjusting RFC calls intended for a le-
gitimate external server before returning the results to the requesting client through
the Gateway. Such an a�ack could be used to modify RFC requests and/or the data re-
turned to SAP and other clients. It’s important to remember that data in the context of
RFC communication can be sensitive information such as financial results, bank ac-
counts, credit card numbers, customer records and employee salaries.

O�en a server cannot complete an RFC request without obtaining more information
from the requesting client through a call-back. When doing so, the server bypasses au-
thentication in the client and assumes the same privileges as the user that was used by
the client to initiate the call. This can have dire consequences if the client is an SAP
Application Server and the user has SAP_ALL authorizations.

This illustrates how merely enabling the registration of external RFC servers on the
Gateway can be exploited by an a�acker to gain complete control over an SAP system.

You can disable remote access to the Gateway Monitor with the following parameter:
gw/monitor = 1 Local access only. You can also restrict the ability to register servers
with the Gateway using a whitelist approach through the gw/sec_info and gw/reg_info
files found in the data dictionary of your SAP instance. These files should be periodi-
cally reviewed for illicit changes. For more information, refer to SAP Notes 110612 and
64016.

In addition, you should ensure that RFC users are setup as system rather than dialog
users to limit their ability to interact with SAP, although this may not be possible in all
cases. You should also ensure they have the minimal level of rights in target systems to
perform their functions. It also good practice to review the list of RFC users since users
are o�en replicated in multiple systems without any business need during cross-
system synchronization.

Finally, we recommend locking down access to RFC and Gateway trace files located in
the WORK directory of the application server. These files o�en contain important se-
curity and runtime information such as usernames and passwords. To learn how to
perform this, refer to SAP Note 532918.

The Message Server is primarily a load balancer for application servers. It can be found
on the central instance, usually configured at port 3600. Unlike the Gateway Monitor,
remote access to the message server is disabled by default. You can verify this hasn’t
changed by checking the ms/monitor parameter which should be set to 0 rather than 1.
However, similar to the Gateway, the Message Server allows anyone to register an ap-
plication server from any location. The ACL for the Server should be an extensive
whitelist specifying all host names, domains, IP addresses and/or subnetwork masks
from which application servers are allowed to log on to the message server. Contrast
this to the following default in ms/acl_info:

HOST=*

This exposes the Message Server to the following a�ack:

1. An a�acker registers a rogue computer with the Message Server.

2. The rouge computer sends load information to the Server, making sure to let the
Server know that it has plenty of capacity.

3. Since the Message Server is configured to distribute requests to servers with the
least loads, the a�acker waits for the Server to redirect a stream of business traffic
to the rogue computer, most likely in plain text.

This highlights the importance of properly configuring the Message Server ACL to re-
strict connections to the service. You can augment a strong ACL with the SAProuter
which works as an application-level gateway or reverse proxy, controlling connections
with SAP systems.

The SAProuter route permission table should be used to define source and target IP ad-
dresses, SNC encryption, protocols and password authentication. Remember to allow
only external connections using the SAP protocol and round off the list with an appro-
priate deny-all rule.

13

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

LAYER SEVEN SECURITY | PERFECT STORM

Figure 4.1: Default SAP users

SAP ships with a number of privileged standard user IDs. Examples include SAP*,
DDIC, EARLYWATCH, SAPCPIC and TMSADM. These IDs are used for, among other
things, management of the data dictionary, ABAP repository, program interfaces and
transports, as well as system monitoring and troubleshooting.

SAP recommends changing the default passwords of standard users and even goes as
far as urging customers to lock SAP*, EARLYWATCH and SAPCPIC and enforce regular
password changes for most standard users. The argument for locking down such users
is plain to see but there are a number of risks that should be taken into account when
securing standard users. For example, password changes for TMSADM can be problem-
atic since it can have an adverse effect on transports.

Another risk associated with poorly designed lock-down strategies concerns the stan-
dard user, SAP*. SAP* is unlike any other user. It is hard-coded in the SAP kernel. Since
the user is required in emergency situations such as assisting administrators to get
back into locked-out systems, it can never be completely removed even when deleted
from the user records.

SAP* behaves like a normal user as long as you maintain its master record. Therefore,
it’s subject to authorization checks and password changes. Deleting the master record
will remove SAP* from the user tables and give the impression that it’s no longer avail-
able for use since it won’t be visible in the tables or report RSUSR003. However, since
SAP* is programmed in the system, it doesn’t require a user master record to be active
and accessible. Deletion from the user tables merely removes the checks performed on
SAP* which provides the user with even greater authorizations. It also changes the
password to PASS and provides no avenue to change the password. In short, deletion
leads SAP to recreate the SAP* user with unrestricted access and a widely known de-
fault password.

A far be�er response is to deactivate SAP* and replace it with another super user.
SAP’s recommendations are provided below.

• Create a user master record for SAP* in all new clients and in client 066.

• Assign a new password to SAP* in clients 000 and 001.

• Delete all profiles from the SAP* profile list so that it has no authorizations.

• Ensure that SAP* is assigned to the user group SUPER to prevent accidental dele-
tion or modification of the user master record.

• Set the system profile parameter login/no_automatic_user_sapstar to a value
greater than 0.

CONTROLLING DEFAULT SAP USERSCHAPTER FAUR

14

SAP*

SAP*

DDIC

SAPCPIC

EARLYWATCH

TMSADM

000, 001, 066

New Clients

000, 001

000, 001

066

000, 001

06071992

PASS

19920706

ADMIN

SUPPORT

PASSWORD

USER ID CLIENTS PASSWORDS

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

LAYER SEVEN SECURITY | PERFECT STORM

There is a common misconception that that the authorization checks packaged in a
SAP_NEW profile with each release are designed to enable users to gain access to
newly introduced functions.

Although nothing could be further from the truth, this misconception is understand-
able since SAP packages the authorization checks in upgrades and releases which cre-
ates an automatic association between new functionality and the newly introduced
authorization checks.

The reality is that the authorization checks introduced with every upgrade are tar-
geted not at enabling the use of new features but closing gaps related to the execution
of existing functions. In other words, they are designed to apply authorization checks
in areas where previously no such checks were performed.

Given the volume of new authorization checks introduced with each upgrade and the
incredible task of assigning each check to the relevant roles and profiles, SAP recom-
mends temporarily assigning SAP_NEW to all users a�er an upgrade. This shortcut en-
sures that users are able to continue to use functions that are now protected with au-
thorization checks and provides administrators with some breathing room to analyze
and distribute the authorizations to specific roles or profiles before deleting the
SAP_NEW profile. This minimizes the window of opportunity during which end users
could exploit any excessive privilege or potential conflict in the segregation of duties
while ensuring there is no disruption to the availability of SAP functions.

The reality is that very few administrators follow the recommendations, especially
those related to the eventual deletion of the SAP_NEW profile. The end result is that
many users are effectively provided with authorizations that go beyond their role re-
quirements on a permanent basis. The situation is even worse if administrators fail to
delete the individual profiles associated with each release from the composite profile.
This is the difference between being assigned new authorizations in a single upgrade
and being assigned authorizations in all upgrades performed in an SAP instance.
Clearly, the risk is far greater with the la�er, although it may go undetected if you are
reviewing access at a transaction rather than authorization level.

To determine whether this scenario exists in your environment, take a fresh look at
the composite SAP_NEW profile. If you see a long list of single profiles from multiple
releases or upgrades, its time to revise your authorization concept. You should also
consider using the update procedure in SU25 (report SAPLPRGN) to adjust roles and
profiles following an upgrade.

SAP_NEWCHAPTER FIVE

15

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

LAYER SEVEN SECURITY | PERFECT STORM

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

BREAKING SAP PASSWORD SECURITYCHAPTER SIX

16

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

Figure 6.1: Table USR02

LAYER SEVEN SECURITY | PERFECT STORM

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

17LAYER SEVEN SECURITY | PERFECT STORM

WHITE PAPER

LAYER SEVEN SECURITY

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

Once activated, the rootkit may, for example, relay every new customer record created
in SAP to a remote server controlled by the a�acker, change the bank details for new
vendors, modify operational and financial results, etc.

The source code for some programs is protected at both the application and database
level. Within SAP, this can be verified through the ABAP Editor (SE38) which will
generate an error message if a user a�empts to display or change the source code of
certain programs. At the database level, such programs can be identified through the
SQLX field. An a�acker will not be able to modify the source code for these programs
even with direct access to the database using the method outlined above.

One of the most critical programs in SAP is SAPMSYST. This program receives
authentication data from dialog users through SAP GUI and other clients.
Understandably, access to the SAPMSYST source code is tightly controlled. However,
even programs such as SAPMSYST can be modified directly in the database using SQL
queries that target the program name or pivot. Backdoors in SAPMSYST can be used to
forward authentication data (client, user and password) to an a�acker through email
and other methods.

There are very few ways to detect backdoors or rootkits in SAP other than through a
full review of the source code of all programs. This is an impossible task given that
SAP ERP alone has over 2M standard programs, not to mention custom programs.
Some of these programs have more than 50,000 lines of code. Therefore, security
efforts should focus upon preventative measures. SAP o�en issues Notes to patch
errors in the code base that were not detected and reversed during the original round
of QA. Customers should monitor and implement such patches as soon as they are
released.

Also, the SAP Code Inspector (transaction SCI) should be used to check the security of
new or critical ABAP code. Alternatively, there are SAP add-ons that can be used to
periodically review and detect changes to ABAP programs. These are discussed in
Chapter 12.

Like most systems, SAP is vulnerable to backdoors and rootkits. These terms are o�en
used interchangeably since they refer to similar threats. Backdoors are designed to
bypass normal authentication and authorization mechanisms in systems. They can
take a variety of forms from hardcoded users and passwords in programs to sophisti-
cated malware that provides remote, privileged access to target systems while hiding
the activities of a�ackers. The la�er provides hackers with a method to compromise
order-to-cash, process-to-pay, financial reporting and other processes without
detection.

In the Chapter 6, we discussed the problem of downwards compatibility for password
hashes. We noted that SAP will allow successful logons against backward compatible
hashes without an entry in the system log if value 4 is specified for the
password_downwards_compatibility parameter (in fact, value 3 will also permit logons
against old hashes but will register the event in the system log). An a�acker can
exploit this vulnerability and create a backdoor into SAP by modifying the downwards
compatible hash of a user account. This will enable the a�acker to use the
compromised user account to logon to SAP. When doing so, the system will first check
the password provided by the a�acker against the stronger hash. This check will fail.
However, since SAP is configured to accept downwards-compatible hashes, it will
perform a second check against the weaker hash. The password provided by the
a�acker will sail through the second check. Note that stronger hashes are untouched
by a�ackers. Since legitimate users will continue to authenticate with SAP through
passwords stored using strong hashes, they will be completely unaware that their
accounts have been compromised.

Some standard programs contain hardcoded bypasses for specific usernames.
Credentials can also be also hardcoded into RFC connections which, if le�
unencrypted, can be intercepted and used by a�ackers. Frequently, the credentials are
for users with SAP_ALL privileges.

All standard and custom programs installed in SAP are stored in the REPOSRC
database table. This includes program source code which can be found in the DATA
field in compressed form. An a�acker can gain access to the database by exploiting
vulnerabilities in the application, operating system or database layer, such as those
outlined in this Paper.

With such access, an a�acker can inject a rootkit directly into an ABAP program in the
REPOSRC table using SQL queries. In doing so, the a�acker would bypass SAP change
controls that lockdown direct changes in production environments, control access to
development tools such as the Workbench, and restrict the ability to change the
dictionary or programs by requiring a developer key issued by SAP.

A�er injecting the rootkit, the a�acker will ensure that SAP regenerates and updates
the program by removing the relevant record from the REPOLOAD table. Again, this is
performed through a SQL query with a simple command line. The regeneration will
activate the rootkit.

EXPLORING SAP BACKDOORS
AND ROOTKITS

CHAPTER SEVEN

18LAYER SEVEN SECURITY | PERFECT STORM

WHITE PAPER

LAYER SEVEN SECURITY

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

Once activated, the rootkit may, for example, relay every new customer record created
in SAP to a remote server controlled by the a�acker, change the bank details for new
vendors, modify operational and financial results, etc.

The source code for some programs is protected at both the application and database
level. Within SAP, this can be verified through the ABAP Editor (SE38) which will
generate an error message if a user a�empts to display or change the source code of
certain programs. At the database level, such programs can be identified through the
SQLX field. An a�acker will not be able to modify the source code for these programs
even with direct access to the database using the method outlined above.

One of the most critical programs in SAP is SAPMSYST. This program receives
authentication data from dialog users through SAP GUI and other clients.
Understandably, access to the SAPMSYST source code is tightly controlled. However,
even programs such as SAPMSYST can be modified directly in the database using SQL
queries that target the program name or pivot. Backdoors in SAPMSYST can be used to
forward authentication data (client, user and password) to an a�acker through email
and other methods.

There are very few ways to detect backdoors or rootkits in SAP other than through a
full review of the source code of all programs. This is an impossible task given that
SAP ERP alone has over 2M standard programs, not to mention custom programs.
Some of these programs have more than 50,000 lines of code. Therefore, security
efforts should focus upon preventative measures. SAP o�en issues Notes to patch
errors in the code base that were not detected and reversed during the original round
of QA. Customers should monitor and implement such patches as soon as they are
released.

Also, the SAP Code Inspector (transaction SCI) should be used to check the security of
new or critical ABAP code. Alternatively, there are SAP add-ons that can be used to
periodically review and detect changes to ABAP programs. These are discussed in
Chapter 12.

19

Like most systems, SAP is vulnerable to backdoors and rootkits. These terms are o�en
used interchangeably since they refer to similar threats. Backdoors are designed to
bypass normal authentication and authorization mechanisms in systems. They can
take a variety of forms from hardcoded users and passwords in programs to sophisti-
cated malware that provides remote, privileged access to target systems while hiding
the activities of a�ackers. The la�er provides hackers with a method to compromise
order-to-cash, process-to-pay, financial reporting and other processes without
detection.

In the Chapter 6, we discussed the problem of downwards compatibility for password
hashes. We noted that SAP will allow successful logons against backward compatible
hashes without an entry in the system log if value 4 is specified for the
password_downwards_compatibility parameter (in fact, value 3 will also permit logons
against old hashes but will register the event in the system log). An a�acker can
exploit this vulnerability and create a backdoor into SAP by modifying the downwards
compatible hash of a user account. This will enable the a�acker to use the
compromised user account to logon to SAP. When doing so, the system will first check
the password provided by the a�acker against the stronger hash. This check will fail.
However, since SAP is configured to accept downwards-compatible hashes, it will
perform a second check against the weaker hash. The password provided by the
a�acker will sail through the second check. Note that stronger hashes are untouched
by a�ackers. Since legitimate users will continue to authenticate with SAP through
passwords stored using strong hashes, they will be completely unaware that their
accounts have been compromised.

Some standard programs contain hardcoded bypasses for specific usernames.
Credentials can also be also hardcoded into RFC connections which, if le�
unencrypted, can be intercepted and used by a�ackers. Frequently, the credentials are
for users with SAP_ALL privileges.

All standard and custom programs installed in SAP are stored in the REPOSRC
database table. This includes program source code which can be found in the DATA
field in compressed form. An a�acker can gain access to the database by exploiting
vulnerabilities in the application, operating system or database layer, such as those
outlined in this Paper.

With such access, an a�acker can inject a rootkit directly into an ABAP program in the
REPOSRC table using SQL queries. In doing so, the a�acker would bypass SAP change
controls that lockdown direct changes in production environments, control access to
development tools such as the Workbench, and restrict the ability to change the
dictionary or programs by requiring a developer key issued by SAP.

A�er injecting the rootkit, the a�acker will ensure that SAP regenerates and updates
the program by removing the relevant record from the REPOLOAD table. Again, this is
performed through a SQL query with a simple command line. The regeneration will
activate the rootkit.

LAYER SEVEN SECURITY | PERFECT STORM

WHITE PAPER

LAYER SEVEN SECURITY

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

Today, many SAP functions are accessible as Web services through the Netweaver
Application Server (AS). This is achieved through the ability of the Netweaver AS to
support Java code that meets the J2EE (Enterprise Edition) standard, as well as SAP’s
own language for business applications, ABAP.

Java is a programming language and platform that derives much of its syntax from C
and C++. A defining characteristic is its portability: Java is based on the principle of
‘write once, run anywhere’. As a result, programs wri�en in Java can run on almost any
platform. This is achieved through bytecode which acts as an intermediary between
Java language and virtual machines known as Java Runtime Environments (JRE)
installed on hosts.

Portability is the key to Java’s success. It’s so popular, it can be found on an estimated 3
billion devices worldwide including everything from Blu-ray players to parking
stations.

There is a downside to Java’s success and, as is o�en the case, security pays the price.
The accessibility and popularity of Java makes it an a�ractive target for a�ackers. The
situation is worsened by inherent vulnerabilities in the platform.

Java is susceptible to reverse engineering. Simply put, application-based virtual
machines such as Java are easier to reverse engineer than native applications due to
their open source code. Java source code compiled into byte code is stored in .class files.
These files can be viewed and modified by anyone with some technical background in
Java programming which, as we just learned, is fairly widespread. Reverse engineering
can be simplified through byte code disassesmblers such as IDA and Eclipse.

Moreover, since a JRE is a virtual machine that is hardware independent, there are
fewer hurdles presented to an a�acker a�empting to gain full control over a Java
program.

Java security has improved markedly over recent years. However, much of the legacy
code remains for backwards compatibility. Also, while security techniques such as
encryption and obfuscation can be used to mitigate a�acks, there are still points of
vulnerability and security is not well understood or consistently applied by program-
mers. Therefore, Java can be vulnerable to exploits such as XSS, session hijacking and
SQL injection. In fact, there are over 1500 records for Java vulnerabilities in the
National Vulnerability Database.10

Unlike Java Standard Edition (SE), Java EE is designed specifically for servers and main-
frames and contains libraries for developing components such as Servlets, JavaBeans
and JavaServer Pages. These are used by developers to create portable and scalable ap-
plications that integrate with multiple systems.

ATTACKS AGAINST THE SAP JAVA ENGINE The SAP J2EE Engine (renamed to AS Java in version 7.1) consists of three hierarchal,
logical layers: Enterprise Runtime that provides the core functions of the system,
Components such as interfaces that provide various runtime services and APIs, and
Applications deployed on the J2EE Engine.

The Engine drives many of the newer components of the SAP landscape designed to in-
tegrate business systems. Applications such as SAP Portal, SAP Mobile, Exchange
Infrastructure (XI), Process Integration (PI) and Solution Manager are used to connect
or control systems processing and storing sensitive data. As such, they present a lucra-
tive target for both internal and external a�ackers.

A typical internal a�ack against SAP applications through the J2EE Engine is likely to
begin with a basic port scan. This is likely to reveal a dozen or so open ports including
the following:

5NN00 – Web Server
5NN04 – Visual Administrator (replaced by the Netweaver
 Administrator in the v7.2)
5NN08 – J2EE Telnet

These services are used to manage everything from users to system configuration, o�en
through default users such as Administrator and J2EE_ADMIN. Although there are no
default passwords for such users, the Web Server and J2EE Telnet transmit authentica-
tion data in clear text. Therefore, an a�acker can simply sniff the traffic flow to obtain
the credentials required to compromise these accounts and control the J2EE Engine.

The Visual Administrator (VA) will present the a�acker with a greater challenge since it
transmits passwords in encrypted form. However, the password algorithm has been re-
versed by security researchers and appears to be a variant of base64 encoding. VA can
be used to manage interfaces, libraries, modules and services in web-enabled SAP appli-
cations.

This a�ack vector can be prevented by disabling unnecessary services, restricting ac-
cess to open ports and enabling SSL encryption between server connections. In our ex-
perience, such advice is rarely followed, especially SSL encryption since it’s o�en associ-
ated with a drag in performance.

Although internal hackers are usually presented with a wide number of entry points to
SAP applications, they are prone to detection.

External hackers enjoy the advantage of anonymity. Traditionally, the downside for ex-
ternal a�ackers was the difficulty in reaching internal SAP systems. To access the VA,
for example, an a�acker needs to use the P4 protocol over port 5NN04. This can only be
reached internally. However, accessibility is less of a problem today. Contrary to popu-
lar belief, many SAP systems are now connected to the Internet and discoverable

CHAPTER EIGHT

20

through search engines such as Google or specialized engines such as Shodan. Figures
8.1 and 8.2 provides a sample of Shodan search results and Google hacking strings used
by a�ackers to locate SAP targets in the J2EE Engine.

Once discovered, an a�acker can trigger error messages to fingerprint SAP components
and analyze responses to gather information such as host names, SSIDs, system num-
bers, application versions and IP addresses.

The a�acker can then a�empt to launch a series of well-known cross-site scripting
(XSS) a�acks against components of the hundreds of default Java applications installed
on the Netweaver AS. According to SAP, the effect of XSS a�acks can include session hi-
jacking, data leakage through the redirection of form input such as credit card and per-
sonal information, key logging and denial of service. 11

The a�acker can also execute an SMB Relay a�ack against Windows-based SAP servers.
SMB Relay is a program used to execute Man-in-the-Middle (MITM) a�acks through
methods such as DNS poisoning and has been successfully tested against J2EE applica-
tions such as Meta Model Repository (MMR). It is o�en used by hackers to obtain ad-
ministrator credentials which are then used to remote shell into target systems with
privileged access.

Yet another avenue available to a hacker is the Invoker Servlet a�ack. A servlet is like a
Java applet, except that it runs on a server instead of a browser. Servlet security is de-
fined in the web.xml file located in the web.inf directory. The web.xml file specifies
which resources can be served publically and which resources are private, accessible
only by designated groups. The file also controls which servlets are available for end us-
ers since not all servlets are intended for direct client access. Many are designed for
background processes.

An a�acker can bypass the authentication defined in the web.xml file through a HTTP
request that directly calls a servlet by its servlet name or fully qualified servlet class
name instead of using its URL mapping. This is known as the invoker servlet.
Furthermore, the a�acker can call servlets not declared in the web.xml file. The risks as-
sociated with this vulnerability should not be underestimated. It can provide a�ackers
with unauthenticated access to critical functions in Enterprise Portals, Mobile, Process
Integration, Solution Manager and other SAP applications. This may include, for ex-
ample, custom servlets designed to process customer orders, update pricing, or transmit
accounts payable and payroll information.

The invoker servlet was developed by programmers at SAP to rapidly prototype and de-
bug systems. SAP’s standard code reviews failed to detect and remove the servlet be-
fore release.

The invoker servlet should be disabled immediately by changing the value of the
EnableInvokerServletGlobally property of servlet_jsp on the server nodes to False. You
should also update your security patch level.12 There are patches that protect SAP
against basic SMB Relay a�acks. However, such a�acks are difficult to guard against
when combined with XSRF or XSS. 13

For detailed guidance on countermeasures for session handling, XSRF, SQL injection, di-
rectory traversal, XSS and other vulnerabilities affecting SAP applications, you should
follow security recommendations documented in SAP’s White Paper Protecting Java
and ABAP-Based SAP Applications Against Common A�acks. The recommendations
are SAP’s response to the rising tide of security threats faced by its product suite.
However, they fail to adequately address one of the most critical vulnerabilities in the
J2EE Engine related to Header Variable Authentication.

This vulnerability was first documented by Dr Jorg Wul�ange in an article on the SAP
Developer Network published in 2006. 14 The article was intended to outline procedures
for implementing third party Web Access Management (WAM) solutions such as RSA
ClearTrust, CA Siteminder and Oracle Oblix but, in the process, revealed a security flaw
in the authentication model.

Header Variable Authentication delegates the verification of users, passwords and
other factors that are part of an authentication scheme to an external WAM. When a
user is successfully authenticated, the WAM directs the user to the J2EE Engine with a
HTTP request that contains the logon name of the user in the header. There is no addi-
tional password authentication performed by the Engine. The flaw in the model arises
from the fact that an a�acker can send a HTML request directly to the Engine listening
on h�p//j2eehost:5000/irj without authenticating through the WAM. The Engine will
then issue a SSO logon ticket in the form of a MYSAPSSO2 cookie directly to the at-
tacker. This will provide access to applications supported by the Engine including the
SAP Portal, Mobile, XI, PI, etc. The a�acker may also get access to backend applications
such as FI, CO, MM and HR that have trust relationships with the Engine, as well as in-
stall backdoors to secure future access in PAR files that contain Portal applications.

The vulnerability in the Header Variable Authentication model can be mitigated by fire-
wall rules that control direct connections to the J2EE Engine. Such rules will verify the
IP addresses of incoming HTTP requests against a list of trusted sources. Another op-
tion is configuring SSL which enables mutual authentication between clients and serv-
ers. However, SSL can be more difficult to configure and may impact system perfor-
mance. It will also require ongoing maintenance since certificates have to be periodi-
cally renewed to retain their validity. 15

LAYER SEVEN SECURITY | PERFECT STORM

WHITE PAPER

LAYER SEVEN SECURITY

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

Today, many SAP functions are accessible as Web services through the Netweaver
Application Server (AS). This is achieved through the ability of the Netweaver AS to
support Java code that meets the J2EE (Enterprise Edition) standard, as well as SAP’s
own language for business applications, ABAP.

Java is a programming language and platform that derives much of its syntax from C
and C++. A defining characteristic is its portability: Java is based on the principle of
‘write once, run anywhere’. As a result, programs wri�en in Java can run on almost any
platform. This is achieved through bytecode which acts as an intermediary between
Java language and virtual machines known as Java Runtime Environments (JRE)
installed on hosts.

Portability is the key to Java’s success. It’s so popular, it can be found on an estimated 3
billion devices worldwide including everything from Blu-ray players to parking
stations.

There is a downside to Java’s success and, as is o�en the case, security pays the price.
The accessibility and popularity of Java makes it an a�ractive target for a�ackers. The
situation is worsened by inherent vulnerabilities in the platform.

Java is susceptible to reverse engineering. Simply put, application-based virtual
machines such as Java are easier to reverse engineer than native applications due to
their open source code. Java source code compiled into byte code is stored in .class files.
These files can be viewed and modified by anyone with some technical background in
Java programming which, as we just learned, is fairly widespread. Reverse engineering
can be simplified through byte code disassesmblers such as IDA and Eclipse.

Moreover, since a JRE is a virtual machine that is hardware independent, there are
fewer hurdles presented to an a�acker a�empting to gain full control over a Java
program.

Java security has improved markedly over recent years. However, much of the legacy
code remains for backwards compatibility. Also, while security techniques such as
encryption and obfuscation can be used to mitigate a�acks, there are still points of
vulnerability and security is not well understood or consistently applied by program-
mers. Therefore, Java can be vulnerable to exploits such as XSS, session hijacking and
SQL injection. In fact, there are over 1500 records for Java vulnerabilities in the
National Vulnerability Database.10

Unlike Java Standard Edition (SE), Java EE is designed specifically for servers and main-
frames and contains libraries for developing components such as Servlets, JavaBeans
and JavaServer Pages. These are used by developers to create portable and scalable ap-
plications that integrate with multiple systems.

The SAP J2EE Engine (renamed to AS Java in version 7.1) consists of three hierarchal,
logical layers: Enterprise Runtime that provides the core functions of the system,
Components such as interfaces that provide various runtime services and APIs, and
Applications deployed on the J2EE Engine.

The Engine drives many of the newer components of the SAP landscape designed to in-
tegrate business systems. Applications such as SAP Portal, SAP Mobile, Exchange
Infrastructure (XI), Process Integration (PI) and Solution Manager are used to connect
or control systems processing and storing sensitive data. As such, they present a lucra-
tive target for both internal and external a�ackers.

A typical internal a�ack against SAP applications through the J2EE Engine is likely to
begin with a basic port scan. This is likely to reveal a dozen or so open ports including
the following:

5NN00 – Web Server
5NN04 – Visual Administrator (replaced by the Netweaver
 Administrator in the v7.2)
5NN08 – J2EE Telnet

These services are used to manage everything from users to system configuration, o�en
through default users such as Administrator and J2EE_ADMIN. Although there are no
default passwords for such users, the Web Server and J2EE Telnet transmit authentica-
tion data in clear text. Therefore, an a�acker can simply sniff the traffic flow to obtain
the credentials required to compromise these accounts and control the J2EE Engine.

The Visual Administrator (VA) will present the a�acker with a greater challenge since it
transmits passwords in encrypted form. However, the password algorithm has been re-
versed by security researchers and appears to be a variant of base64 encoding. VA can
be used to manage interfaces, libraries, modules and services in web-enabled SAP appli-
cations.

This a�ack vector can be prevented by disabling unnecessary services, restricting ac-
cess to open ports and enabling SSL encryption between server connections. In our ex-
perience, such advice is rarely followed, especially SSL encryption since it’s o�en associ-
ated with a drag in performance.

Although internal hackers are usually presented with a wide number of entry points to
SAP applications, they are prone to detection.

External hackers enjoy the advantage of anonymity. Traditionally, the downside for ex-
ternal a�ackers was the difficulty in reaching internal SAP systems. To access the VA,
for example, an a�acker needs to use the P4 protocol over port 5NN04. This can only be
reached internally. However, accessibility is less of a problem today. Contrary to popu-
lar belief, many SAP systems are now connected to the Internet and discoverable

INTERNAL ATTACKS TO THE SAP J2EE ENGINE

EXTERNAL ATTACKS TO THE SAP J2EE ENGINE

21

through search engines such as Google or specialized engines such as Shodan. Figures
8.1 and 8.2 provides a sample of Shodan search results and Google hacking strings used
by a�ackers to locate SAP targets in the J2EE Engine.

Once discovered, an a�acker can trigger error messages to fingerprint SAP components
and analyze responses to gather information such as host names, SSIDs, system num-
bers, application versions and IP addresses.

The a�acker can then a�empt to launch a series of well-known cross-site scripting
(XSS) a�acks against components of the hundreds of default Java applications installed
on the Netweaver AS. According to SAP, the effect of XSS a�acks can include session hi-
jacking, data leakage through the redirection of form input such as credit card and per-
sonal information, key logging and denial of service. 11

The a�acker can also execute an SMB Relay a�ack against Windows-based SAP servers.
SMB Relay is a program used to execute Man-in-the-Middle (MITM) a�acks through
methods such as DNS poisoning and has been successfully tested against J2EE applica-
tions such as Meta Model Repository (MMR). It is o�en used by hackers to obtain ad-
ministrator credentials which are then used to remote shell into target systems with
privileged access.

Yet another avenue available to a hacker is the Invoker Servlet a�ack. A servlet is like a
Java applet, except that it runs on a server instead of a browser. Servlet security is de-
fined in the web.xml file located in the web.inf directory. The web.xml file specifies
which resources can be served publically and which resources are private, accessible
only by designated groups. The file also controls which servlets are available for end us-
ers since not all servlets are intended for direct client access. Many are designed for
background processes.

An a�acker can bypass the authentication defined in the web.xml file through a HTTP
request that directly calls a servlet by its servlet name or fully qualified servlet class
name instead of using its URL mapping. This is known as the invoker servlet.
Furthermore, the a�acker can call servlets not declared in the web.xml file. The risks as-
sociated with this vulnerability should not be underestimated. It can provide a�ackers
with unauthenticated access to critical functions in Enterprise Portals, Mobile, Process
Integration, Solution Manager and other SAP applications. This may include, for ex-
ample, custom servlets designed to process customer orders, update pricing, or transmit
accounts payable and payroll information.

The invoker servlet was developed by programmers at SAP to rapidly prototype and de-
bug systems. SAP’s standard code reviews failed to detect and remove the servlet be-
fore release.

The invoker servlet should be disabled immediately by changing the value of the
EnableInvokerServletGlobally property of servlet_jsp on the server nodes to False. You
should also update your security patch level.12 There are patches that protect SAP
against basic SMB Relay a�acks. However, such a�acks are difficult to guard against
when combined with XSRF or XSS. 13

For detailed guidance on countermeasures for session handling, XSRF, SQL injection, di-
rectory traversal, XSS and other vulnerabilities affecting SAP applications, you should
follow security recommendations documented in SAP’s White Paper Protecting Java
and ABAP-Based SAP Applications Against Common A�acks. The recommendations
are SAP’s response to the rising tide of security threats faced by its product suite.
However, they fail to adequately address one of the most critical vulnerabilities in the
J2EE Engine related to Header Variable Authentication.

This vulnerability was first documented by Dr Jorg Wul�ange in an article on the SAP
Developer Network published in 2006. 14 The article was intended to outline procedures
for implementing third party Web Access Management (WAM) solutions such as RSA
ClearTrust, CA Siteminder and Oracle Oblix but, in the process, revealed a security flaw
in the authentication model.

Header Variable Authentication delegates the verification of users, passwords and
other factors that are part of an authentication scheme to an external WAM. When a
user is successfully authenticated, the WAM directs the user to the J2EE Engine with a
HTTP request that contains the logon name of the user in the header. There is no addi-
tional password authentication performed by the Engine. The flaw in the model arises
from the fact that an a�acker can send a HTML request directly to the Engine listening
on h�p//j2eehost:5000/irj without authenticating through the WAM. The Engine will
then issue a SSO logon ticket in the form of a MYSAPSSO2 cookie directly to the at-
tacker. This will provide access to applications supported by the Engine including the
SAP Portal, Mobile, XI, PI, etc. The a�acker may also get access to backend applications
such as FI, CO, MM and HR that have trust relationships with the Engine, as well as in-
stall backdoors to secure future access in PAR files that contain Portal applications.

The vulnerability in the Header Variable Authentication model can be mitigated by fire-
wall rules that control direct connections to the J2EE Engine. Such rules will verify the
IP addresses of incoming HTTP requests against a list of trusted sources. Another op-
tion is configuring SSL which enables mutual authentication between clients and serv-
ers. However, SSL can be more difficult to configure and may impact system perfor-
mance. It will also require ongoing maintenance since certificates have to be periodi-
cally renewed to retain their validity. 15

LAYER SEVEN SECURITY | PERFECT STORM

WHITE PAPER

LAYER SEVEN SECURITY

Figure 8.1: Shodan Search Results

Figure 8.2: Google Search Results

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

Today, many SAP functions are accessible as Web services through the Netweaver
Application Server (AS). This is achieved through the ability of the Netweaver AS to
support Java code that meets the J2EE (Enterprise Edition) standard, as well as SAP’s
own language for business applications, ABAP.

Java is a programming language and platform that derives much of its syntax from C
and C++. A defining characteristic is its portability: Java is based on the principle of
‘write once, run anywhere’. As a result, programs wri�en in Java can run on almost any
platform. This is achieved through bytecode which acts as an intermediary between
Java language and virtual machines known as Java Runtime Environments (JRE)
installed on hosts.

Portability is the key to Java’s success. It’s so popular, it can be found on an estimated 3
billion devices worldwide including everything from Blu-ray players to parking
stations.

There is a downside to Java’s success and, as is o�en the case, security pays the price.
The accessibility and popularity of Java makes it an a�ractive target for a�ackers. The
situation is worsened by inherent vulnerabilities in the platform.

Java is susceptible to reverse engineering. Simply put, application-based virtual
machines such as Java are easier to reverse engineer than native applications due to
their open source code. Java source code compiled into byte code is stored in .class files.
These files can be viewed and modified by anyone with some technical background in
Java programming which, as we just learned, is fairly widespread. Reverse engineering
can be simplified through byte code disassesmblers such as IDA and Eclipse.

Moreover, since a JRE is a virtual machine that is hardware independent, there are
fewer hurdles presented to an a�acker a�empting to gain full control over a Java
program.

Java security has improved markedly over recent years. However, much of the legacy
code remains for backwards compatibility. Also, while security techniques such as
encryption and obfuscation can be used to mitigate a�acks, there are still points of
vulnerability and security is not well understood or consistently applied by program-
mers. Therefore, Java can be vulnerable to exploits such as XSS, session hijacking and
SQL injection. In fact, there are over 1500 records for Java vulnerabilities in the
National Vulnerability Database.10

Unlike Java Standard Edition (SE), Java EE is designed specifically for servers and main-
frames and contains libraries for developing components such as Servlets, JavaBeans
and JavaServer Pages. These are used by developers to create portable and scalable ap-
plications that integrate with multiple systems.

The SAP J2EE Engine (renamed to AS Java in version 7.1) consists of three hierarchal,
logical layers: Enterprise Runtime that provides the core functions of the system,
Components such as interfaces that provide various runtime services and APIs, and
Applications deployed on the J2EE Engine.

The Engine drives many of the newer components of the SAP landscape designed to in-
tegrate business systems. Applications such as SAP Portal, SAP Mobile, Exchange
Infrastructure (XI), Process Integration (PI) and Solution Manager are used to connect
or control systems processing and storing sensitive data. As such, they present a lucra-
tive target for both internal and external a�ackers.

A typical internal a�ack against SAP applications through the J2EE Engine is likely to
begin with a basic port scan. This is likely to reveal a dozen or so open ports including
the following:

5NN00 – Web Server
5NN04 – Visual Administrator (replaced by the Netweaver
 Administrator in the v7.2)
5NN08 – J2EE Telnet

These services are used to manage everything from users to system configuration, o�en
through default users such as Administrator and J2EE_ADMIN. Although there are no
default passwords for such users, the Web Server and J2EE Telnet transmit authentica-
tion data in clear text. Therefore, an a�acker can simply sniff the traffic flow to obtain
the credentials required to compromise these accounts and control the J2EE Engine.

The Visual Administrator (VA) will present the a�acker with a greater challenge since it
transmits passwords in encrypted form. However, the password algorithm has been re-
versed by security researchers and appears to be a variant of base64 encoding. VA can
be used to manage interfaces, libraries, modules and services in web-enabled SAP appli-
cations.

This a�ack vector can be prevented by disabling unnecessary services, restricting ac-
cess to open ports and enabling SSL encryption between server connections. In our ex-
perience, such advice is rarely followed, especially SSL encryption since it’s o�en associ-
ated with a drag in performance.

Although internal hackers are usually presented with a wide number of entry points to
SAP applications, they are prone to detection.

External hackers enjoy the advantage of anonymity. Traditionally, the downside for ex-
ternal a�ackers was the difficulty in reaching internal SAP systems. To access the VA,
for example, an a�acker needs to use the P4 protocol over port 5NN04. This can only be
reached internally. However, accessibility is less of a problem today. Contrary to popu-
lar belief, many SAP systems are now connected to the Internet and discoverable

through search engines such as Google or specialized engines such as Shodan. Figures
8.1 and 8.2 provides a sample of Shodan search results and Google hacking strings used
by a�ackers to locate SAP targets in the J2EE Engine.

Once discovered, an a�acker can trigger error messages to fingerprint SAP components
and analyze responses to gather information such as host names, SSIDs, system num-
bers, application versions and IP addresses.

The a�acker can then a�empt to launch a series of well-known cross-site scripting
(XSS) a�acks against components of the hundreds of default Java applications installed
on the Netweaver AS. According to SAP, the effect of XSS a�acks can include session hi-
jacking, data leakage through the redirection of form input such as credit card and per-
sonal information, key logging and denial of service. 11

The a�acker can also execute an SMB Relay a�ack against Windows-based SAP servers.
SMB Relay is a program used to execute Man-in-the-Middle (MITM) a�acks through
methods such as DNS poisoning and has been successfully tested against J2EE applica-
tions such as Meta Model Repository (MMR). It is o�en used by hackers to obtain ad-
ministrator credentials which are then used to remote shell into target systems with
privileged access.

Yet another avenue available to a hacker is the Invoker Servlet a�ack. A servlet is like a
Java applet, except that it runs on a server instead of a browser. Servlet security is de-
fined in the web.xml file located in the web.inf directory. The web.xml file specifies
which resources can be served publically and which resources are private, accessible
only by designated groups. The file also controls which servlets are available for end us-
ers since not all servlets are intended for direct client access. Many are designed for
background processes.

An a�acker can bypass the authentication defined in the web.xml file through a HTTP
request that directly calls a servlet by its servlet name or fully qualified servlet class
name instead of using its URL mapping. This is known as the invoker servlet.
Furthermore, the a�acker can call servlets not declared in the web.xml file. The risks as-
sociated with this vulnerability should not be underestimated. It can provide a�ackers
with unauthenticated access to critical functions in Enterprise Portals, Mobile, Process
Integration, Solution Manager and other SAP applications. This may include, for ex-
ample, custom servlets designed to process customer orders, update pricing, or transmit
accounts payable and payroll information.

The invoker servlet was developed by programmers at SAP to rapidly prototype and de-
bug systems. SAP’s standard code reviews failed to detect and remove the servlet be-
fore release.

The invoker servlet should be disabled immediately by changing the value of the
EnableInvokerServletGlobally property of servlet_jsp on the server nodes to False. You
should also update your security patch level.12 There are patches that protect SAP
against basic SMB Relay a�acks. However, such a�acks are difficult to guard against
when combined with XSRF or XSS. 13

22

For detailed guidance on countermeasures for session handling, XSRF, SQL injection, di-
rectory traversal, XSS and other vulnerabilities affecting SAP applications, you should
follow security recommendations documented in SAP’s White Paper Protecting Java
and ABAP-Based SAP Applications Against Common A�acks. The recommendations
are SAP’s response to the rising tide of security threats faced by its product suite.
However, they fail to adequately address one of the most critical vulnerabilities in the
J2EE Engine related to Header Variable Authentication.

This vulnerability was first documented by Dr Jorg Wul�ange in an article on the SAP
Developer Network published in 2006. 14 The article was intended to outline procedures
for implementing third party Web Access Management (WAM) solutions such as RSA
ClearTrust, CA Siteminder and Oracle Oblix but, in the process, revealed a security flaw
in the authentication model.

Header Variable Authentication delegates the verification of users, passwords and
other factors that are part of an authentication scheme to an external WAM. When a
user is successfully authenticated, the WAM directs the user to the J2EE Engine with a
HTTP request that contains the logon name of the user in the header. There is no addi-
tional password authentication performed by the Engine. The flaw in the model arises
from the fact that an a�acker can send a HTML request directly to the Engine listening
on h�p//j2eehost:5000/irj without authenticating through the WAM. The Engine will
then issue a SSO logon ticket in the form of a MYSAPSSO2 cookie directly to the at-
tacker. This will provide access to applications supported by the Engine including the
SAP Portal, Mobile, XI, PI, etc. The a�acker may also get access to backend applications
such as FI, CO, MM and HR that have trust relationships with the Engine, as well as in-
stall backdoors to secure future access in PAR files that contain Portal applications.

The vulnerability in the Header Variable Authentication model can be mitigated by fire-
wall rules that control direct connections to the J2EE Engine. Such rules will verify the
IP addresses of incoming HTTP requests against a list of trusted sources. Another op-
tion is configuring SSL which enables mutual authentication between clients and serv-
ers. However, SSL can be more difficult to configure and may impact system perfor-
mance. It will also require ongoing maintenance since certificates have to be periodi-
cally renewed to retain their validity. 15

LAYER SEVEN SECURITY | PERFECT STORM

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

Today, many SAP functions are accessible as Web services through the Netweaver
Application Server (AS). This is achieved through the ability of the Netweaver AS to
support Java code that meets the J2EE (Enterprise Edition) standard, as well as SAP’s
own language for business applications, ABAP.

Java is a programming language and platform that derives much of its syntax from C
and C++. A defining characteristic is its portability: Java is based on the principle of
‘write once, run anywhere’. As a result, programs wri�en in Java can run on almost any
platform. This is achieved through bytecode which acts as an intermediary between
Java language and virtual machines known as Java Runtime Environments (JRE)
installed on hosts.

Portability is the key to Java’s success. It’s so popular, it can be found on an estimated 3
billion devices worldwide including everything from Blu-ray players to parking
stations.

There is a downside to Java’s success and, as is o�en the case, security pays the price.
The accessibility and popularity of Java makes it an a�ractive target for a�ackers. The
situation is worsened by inherent vulnerabilities in the platform.

Java is susceptible to reverse engineering. Simply put, application-based virtual
machines such as Java are easier to reverse engineer than native applications due to
their open source code. Java source code compiled into byte code is stored in .class files.
These files can be viewed and modified by anyone with some technical background in
Java programming which, as we just learned, is fairly widespread. Reverse engineering
can be simplified through byte code disassesmblers such as IDA and Eclipse.

Moreover, since a JRE is a virtual machine that is hardware independent, there are
fewer hurdles presented to an a�acker a�empting to gain full control over a Java
program.

Java security has improved markedly over recent years. However, much of the legacy
code remains for backwards compatibility. Also, while security techniques such as
encryption and obfuscation can be used to mitigate a�acks, there are still points of
vulnerability and security is not well understood or consistently applied by program-
mers. Therefore, Java can be vulnerable to exploits such as XSS, session hijacking and
SQL injection. In fact, there are over 1500 records for Java vulnerabilities in the
National Vulnerability Database.10

Unlike Java Standard Edition (SE), Java EE is designed specifically for servers and main-
frames and contains libraries for developing components such as Servlets, JavaBeans
and JavaServer Pages. These are used by developers to create portable and scalable ap-
plications that integrate with multiple systems.

The SAP J2EE Engine (renamed to AS Java in version 7.1) consists of three hierarchal,
logical layers: Enterprise Runtime that provides the core functions of the system,
Components such as interfaces that provide various runtime services and APIs, and
Applications deployed on the J2EE Engine.

The Engine drives many of the newer components of the SAP landscape designed to in-
tegrate business systems. Applications such as SAP Portal, SAP Mobile, Exchange
Infrastructure (XI), Process Integration (PI) and Solution Manager are used to connect
or control systems processing and storing sensitive data. As such, they present a lucra-
tive target for both internal and external a�ackers.

A typical internal a�ack against SAP applications through the J2EE Engine is likely to
begin with a basic port scan. This is likely to reveal a dozen or so open ports including
the following:

5NN00 – Web Server
5NN04 – Visual Administrator (replaced by the Netweaver
 Administrator in the v7.2)
5NN08 – J2EE Telnet

These services are used to manage everything from users to system configuration, o�en
through default users such as Administrator and J2EE_ADMIN. Although there are no
default passwords for such users, the Web Server and J2EE Telnet transmit authentica-
tion data in clear text. Therefore, an a�acker can simply sniff the traffic flow to obtain
the credentials required to compromise these accounts and control the J2EE Engine.

The Visual Administrator (VA) will present the a�acker with a greater challenge since it
transmits passwords in encrypted form. However, the password algorithm has been re-
versed by security researchers and appears to be a variant of base64 encoding. VA can
be used to manage interfaces, libraries, modules and services in web-enabled SAP appli-
cations.

This a�ack vector can be prevented by disabling unnecessary services, restricting ac-
cess to open ports and enabling SSL encryption between server connections. In our ex-
perience, such advice is rarely followed, especially SSL encryption since it’s o�en associ-
ated with a drag in performance.

Although internal hackers are usually presented with a wide number of entry points to
SAP applications, they are prone to detection.

External hackers enjoy the advantage of anonymity. Traditionally, the downside for ex-
ternal a�ackers was the difficulty in reaching internal SAP systems. To access the VA,
for example, an a�acker needs to use the P4 protocol over port 5NN04. This can only be
reached internally. However, accessibility is less of a problem today. Contrary to popu-
lar belief, many SAP systems are now connected to the Internet and discoverable

through search engines such as Google or specialized engines such as Shodan. Figures
8.1 and 8.2 provides a sample of Shodan search results and Google hacking strings used
by a�ackers to locate SAP targets in the J2EE Engine.

Once discovered, an a�acker can trigger error messages to fingerprint SAP components
and analyze responses to gather information such as host names, SSIDs, system num-
bers, application versions and IP addresses.

The a�acker can then a�empt to launch a series of well-known cross-site scripting
(XSS) a�acks against components of the hundreds of default Java applications installed
on the Netweaver AS. According to SAP, the effect of XSS a�acks can include session hi-
jacking, data leakage through the redirection of form input such as credit card and per-
sonal information, key logging and denial of service. 11

The a�acker can also execute an SMB Relay a�ack against Windows-based SAP servers.
SMB Relay is a program used to execute Man-in-the-Middle (MITM) a�acks through
methods such as DNS poisoning and has been successfully tested against J2EE applica-
tions such as Meta Model Repository (MMR). It is o�en used by hackers to obtain ad-
ministrator credentials which are then used to remote shell into target systems with
privileged access.

Yet another avenue available to a hacker is the Invoker Servlet a�ack. A servlet is like a
Java applet, except that it runs on a server instead of a browser. Servlet security is de-
fined in the web.xml file located in the web.inf directory. The web.xml file specifies
which resources can be served publically and which resources are private, accessible
only by designated groups. The file also controls which servlets are available for end us-
ers since not all servlets are intended for direct client access. Many are designed for
background processes.

An a�acker can bypass the authentication defined in the web.xml file through a HTTP
request that directly calls a servlet by its servlet name or fully qualified servlet class
name instead of using its URL mapping. This is known as the invoker servlet.
Furthermore, the a�acker can call servlets not declared in the web.xml file. The risks as-
sociated with this vulnerability should not be underestimated. It can provide a�ackers
with unauthenticated access to critical functions in Enterprise Portals, Mobile, Process
Integration, Solution Manager and other SAP applications. This may include, for ex-
ample, custom servlets designed to process customer orders, update pricing, or transmit
accounts payable and payroll information.

The invoker servlet was developed by programmers at SAP to rapidly prototype and de-
bug systems. SAP’s standard code reviews failed to detect and remove the servlet be-
fore release.

The invoker servlet should be disabled immediately by changing the value of the
EnableInvokerServletGlobally property of servlet_jsp on the server nodes to False. You
should also update your security patch level.12 There are patches that protect SAP
against basic SMB Relay a�acks. However, such a�acks are difficult to guard against
when combined with XSRF or XSS. 13

For detailed guidance on countermeasures for session handling, XSRF, SQL injection, di-
rectory traversal, XSS and other vulnerabilities affecting SAP applications, you should
follow security recommendations documented in SAP’s White Paper Protecting Java
and ABAP-Based SAP Applications Against Common A�acks. The recommendations
are SAP’s response to the rising tide of security threats faced by its product suite.
However, they fail to adequately address one of the most critical vulnerabilities in the
J2EE Engine related to Header Variable Authentication.

This vulnerability was first documented by Dr Jorg Wul�ange in an article on the SAP
Developer Network published in 2006. 14 The article was intended to outline procedures
for implementing third party Web Access Management (WAM) solutions such as RSA
ClearTrust, CA Siteminder and Oracle Oblix but, in the process, revealed a security flaw
in the authentication model.

Header Variable Authentication delegates the verification of users, passwords and
other factors that are part of an authentication scheme to an external WAM. When a
user is successfully authenticated, the WAM directs the user to the J2EE Engine with a
HTTP request that contains the logon name of the user in the header. There is no addi-
tional password authentication performed by the Engine. The flaw in the model arises
from the fact that an a�acker can send a HTML request directly to the Engine listening
on h�p//j2eehost:5000/irj without authenticating through the WAM. The Engine will
then issue a SSO logon ticket in the form of a MYSAPSSO2 cookie directly to the at-
tacker. This will provide access to applications supported by the Engine including the
SAP Portal, Mobile, XI, PI, etc. The a�acker may also get access to backend applications
such as FI, CO, MM and HR that have trust relationships with the Engine, as well as in-
stall backdoors to secure future access in PAR files that contain Portal applications.

The vulnerability in the Header Variable Authentication model can be mitigated by fire-
wall rules that control direct connections to the J2EE Engine. Such rules will verify the
IP addresses of incoming HTTP requests against a list of trusted sources. Another op-
tion is configuring SSL which enables mutual authentication between clients and serv-
ers. However, SSL can be more difficult to configure and may impact system perfor-
mance. It will also require ongoing maintenance since certificates have to be periodi-
cally renewed to retain their validity. 15

23LAYER SEVEN SECURITY | PERFECT STORM

Figure 9.1: Default ICM 404 Error Message

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

In the previous Chapter, we discussed vulnerabilities arising from SAP’s evolution
from an internal system, developed exclusively through the propriety ABAP language
to a more open system with many functions accessible to internal and external users
through the Web. Driven by business needs, SAP adapted its so�ware to improve user
accessibility and information exchange between systems, referred to by system
engineers as interoperability.

Java is an important component of SAP’s strategy to develop more accessible and
interoperable systems using open source standards. However, the J2EE platform is a
work in progress. In the words of SAP “it will take some before the Java/J2EE platform
offers the performance and reliability that the ABAP environment has already had for
a long time”. 16 Business programs such as FI, CO and MM are still largely driven by
SAP’s ABAP platform.

Both the ABAP and J2EE platforms are components of the Netweaver AS which
evolved from the technical Basis component to a powerful middleware engine at the
core of SAP’s technology. The Netweaver AS integrates users and systems through a
variety of interfaces and protocols.

Web-based HTTP(S) communication requests to both the ABAP and Java stacks are
processed by another component of the Netweaver AS: the Internet Communication
Manager (ICM). Web-enabled services are defined in the Internet Communication
Framework (ICF) accessible through transaction SICF.

Prior to the introduction of the ICM in version 6.10, HTTP requests flowed through the
Internet Transaction Server (ITS) including a web filter known as the Wgate and a
translator known as Agate. The ICM enabled SAP to process HTTP requests directly
using URL handles without the use of middleware such as the ITS.

In common with the J2EE engine, the ICM generates standard error pages when a
non-existing URL is requested or incorrect credentials are submi�ed. This includes
HTTP 404 Not Found and 403 Forbidden which can disclose sensitive information to
the requestor about the target system such as hostname, SSID and system number
(refer to Figure 9.1). This can be fixed through customized error pages. The SAP Help
Portal provides detailed instructions on how to create such pages. 17

The ICM draws upon services enabled in the ICF. Many of the services enabled by
default have known security issues and may be exploited to allow unauthorized access
to critical system functions. Therefore, services should be reviewed and disabled if
they don’t serve business needs or don’t need to be accessible from the Web. This
should include services in /sap/public which don’t require any user authentication and
services with hard-coded logon data. It should also include the following specific
services: echo, FormtoRFC, xrfc, webrfc, IDoc and IDoc_XML.

For a complete list, refer to the SAP security recommendations in Secure
Configuration, SAP Netweaver Application Server ABAP.

MANAGING VULNERABLE
SAP WEB SERVICES

CHAPTER NINE

24

The services can be disabled using SICF (Figure 9.2). Disabled services are displayed in
grey, whereas active services are blue. Remember to analyze and test services before
any deactivation using the ICMan server log. There are o�en dependencies between
services and disabling some services could lead to errors in others.

The ICF service /sap/bc/soap/rfc deserves a special mention. 18 A vulnerability in the
TH_GREP function module could be exploited by an a�acker to obtain administrative
access to UNIX operating systems and therefore, full-blown command over the data-
base. TH_GREP is part of the task handler suite of function modules and is designed to
search for strings in SAP log files stored on the OS. An a�acker can inject the following
command into the search string used by TH_GREP and then export the DISPLAY to a
terminal emulator such as xterm to acquire shell access to SAP (Figure 9.3):

Terminal emulators provide remote access to applications and resources running on
other machines. This a�ack can be performed through a SOAP request if the
/sap/bc/soap/rfc service is activated. SOAP is an XML based protocol supported by SAP
that is used for the exchange of structured information through the Web. To make
ma�ers worse, the TH_GREP function module can be executed by any user with access
to SE37. This includes the EARLYWATCH user. As we discussed in Chapter 4, adminis-
trators o�en fail to change the default password for this user. TH_GREP is also acces-
sible through SM51.

The remote OS command injection vulnerability was originally discovered in UNIX
systems such as AIX. Researchers subsequently found the same vulnerability in the
Windows platform.

LAYER SEVEN SECURITY | PERFECT STORM

Figure 9.2: SICF

Figure 9.3: TH_GREP

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

In the previous Chapter, we discussed vulnerabilities arising from SAP’s evolution
from an internal system, developed exclusively through the propriety ABAP language
to a more open system with many functions accessible to internal and external users
through the Web. Driven by business needs, SAP adapted its so�ware to improve user
accessibility and information exchange between systems, referred to by system
engineers as interoperability.

Java is an important component of SAP’s strategy to develop more accessible and
interoperable systems using open source standards. However, the J2EE platform is a
work in progress. In the words of SAP “it will take some before the Java/J2EE platform
offers the performance and reliability that the ABAP environment has already had for
a long time”. 16 Business programs such as FI, CO and MM are still largely driven by
SAP’s ABAP platform.

Both the ABAP and J2EE platforms are components of the Netweaver AS which
evolved from the technical Basis component to a powerful middleware engine at the
core of SAP’s technology. The Netweaver AS integrates users and systems through a
variety of interfaces and protocols.

Web-based HTTP(S) communication requests to both the ABAP and Java stacks are
processed by another component of the Netweaver AS: the Internet Communication
Manager (ICM). Web-enabled services are defined in the Internet Communication
Framework (ICF) accessible through transaction SICF.

Prior to the introduction of the ICM in version 6.10, HTTP requests flowed through the
Internet Transaction Server (ITS) including a web filter known as the Wgate and a
translator known as Agate. The ICM enabled SAP to process HTTP requests directly
using URL handles without the use of middleware such as the ITS.

In common with the J2EE engine, the ICM generates standard error pages when a
non-existing URL is requested or incorrect credentials are submi�ed. This includes
HTTP 404 Not Found and 403 Forbidden which can disclose sensitive information to
the requestor about the target system such as hostname, SSID and system number
(refer to Figure 9.1). This can be fixed through customized error pages. The SAP Help
Portal provides detailed instructions on how to create such pages. 17

The ICM draws upon services enabled in the ICF. Many of the services enabled by
default have known security issues and may be exploited to allow unauthorized access
to critical system functions. Therefore, services should be reviewed and disabled if
they don’t serve business needs or don’t need to be accessible from the Web. This
should include services in /sap/public which don’t require any user authentication and
services with hard-coded logon data. It should also include the following specific
services: echo, FormtoRFC, xrfc, webrfc, IDoc and IDoc_XML.

For a complete list, refer to the SAP security recommendations in Secure
Configuration, SAP Netweaver Application Server ABAP.

The services can be disabled using SICF (Figure 9.2). Disabled services are displayed in
grey, whereas active services are blue. Remember to analyze and test services before
any deactivation using the ICMan server log. There are o�en dependencies between
services and disabling some services could lead to errors in others.

The ICF service /sap/bc/soap/rfc deserves a special mention. 18 A vulnerability in the
TH_GREP function module could be exploited by an a�acker to obtain administrative
access to UNIX operating systems and therefore, full-blown command over the data-
base. TH_GREP is part of the task handler suite of function modules and is designed to
search for strings in SAP log files stored on the OS. An a�acker can inject the following
command into the search string used by TH_GREP and then export the DISPLAY to a
terminal emulator such as xterm to acquire shell access to SAP (Figure 9.3):

Terminal emulators provide remote access to applications and resources running on
other machines. This a�ack can be performed through a SOAP request if the
/sap/bc/soap/rfc service is activated. SOAP is an XML based protocol supported by SAP
that is used for the exchange of structured information through the Web. To make
ma�ers worse, the TH_GREP function module can be executed by any user with access
to SE37. This includes the EARLYWATCH user. As we discussed in Chapter 4, adminis-
trators o�en fail to change the default password for this user. TH_GREP is also acces-
sible through SM51.

The remote OS command injection vulnerability was originally discovered in UNIX
systems such as AIX. Researchers subsequently found the same vulnerability in the
Windows platform.

25

`export DISPLAY=<IP address> && xterm`

LAYER SEVEN SECURITY | PERFECT STORM

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

Despite the availability of Web interfaces, SAP GUI remains the most popular means of
connecting to SAP servers. It’s a standard application installed on workstations and a
vital element of SAP’s three tier client, server and database architecture.

Given the prevalence of SAP in today’s businesses, SAP GUI has almost as many
installations in corporations as Internet Explorer and Microso� Office. However,
security professionals are far less informed about SAP GUI vulnerabilities than IE,
Office and Windows issues.

Some of the earliest known vulnerabilities in SAP GUI were discovered in 2008 by
researcher Luigi Auriemma who uncovered several buffer overflow flaws in the
Windows SAPlpd daemon, a printer service available on port 515. 19 The vulnerabilities
can be exploited by an a�acker to provoke denial of service and obtain administrative
access to user workstations. With such access, an a�acker can install Trojans or sniff
user credentials. An a�acker can also obtain usernames and passwords directly from
the sapshortcut.ini configuration file since SAP provides users with the ability to store
passwords in their local directories for auto logon. 20 This will provide direct access to
SAP servers.

Buffer overflows were also found by researchers Mark Litchfield and Alexander
Polyakov, effecting some of the thousands of ActiveX controls embedded in SAP GUI
used to read and write files, execute programs, and connect remotely to SAP servers.
Many of these flaws were rated highly critical by vulnerability assessors. 21

SAP GUI includes a scripting Application Programming Interface (API) that communi-
cates and interacts with servers in the same way as an end user. Although the API is
disabled by default, it is enabled by companies that find it useful for automating
repetitive tasks, as well as server-side testing and client-side integration. Many
security professionals don’t see any risk associated with the use of the scripting API
since it uses the same credentials provided to the end user and therefore, can only
execute transactions granted to the underlying user. However, the script can be used to
log end user interaction with SAP GUI. Consequently, it’s vulnerable to corporate
espionage especially if an a�acker has disabled the security warnings automatically
generated by SAP GUI when a script is executed in the background. This will lessen the
risk of detection.

Also, since scripts can contain logon data and are stored in unencrypted form in local
files, a�ackers are provided with another avenue to steal credentials from
compromised client workstations.

Web-based connections to applications such as the Enterprise Portal (EP), Supplier
Relationship Management (SRM) and Customer Relationship Management (CRM)
through Internet browsers are increasingly common in the SAP landscape. These
connections are managed by the Netweaver AS and offer even less client-side security
than SAP GUI.

EXAMINING VULNERABILITIES
IN SAP GUI AND WEB CLIENTS

CHAPTER TEN

26

There are a number of a�ack vectors for SAP Web clients. One of most dangerous
effects a program called cFolders which is a Web-based platform that enables business
partners to share information and collaborate on documents. The platform uses
cookies to authenticate users and is fully integrated into SRM, Product Lifecycle
Management (PLM) and Knowledge Management (KM).

cFolders is vulnerable to a form of Cross-Site Scripting known as HTML injection that
can lead to the the� of administrator credentials. One of simplest ways to execute this
a�ack is through SRM. This application allows any user to create and store HTML
documents in specific folders. Note that given the nature of the application, a user is
o�en a supplier or other partner. The partner can create a HTML document injected
with a trogan designed to capture the cookie of any user that accesses the document in
cFolders. Since user sessions are not tied to IP addresses, the partner can then use the
cookie to access and modify the documents of other partners and administrative
functions of the system.

Another variant of the a�ack can be used to obtain the credentials required to access
the central ERP instance. If the document is opened by an employee of the target
company, the script can a�ack the vulnerable SAP GUI ActiveX components in the
user’s workstation.

Hackers can also target the standard Web interface used to access SAP with phishing
a�acks. Methods such as email spoofing can be used to lure users to phony logon
screens that appear identical to the standard screen in Figure 10.1. According to some
studies, up to 50 percent of users that receive a spoof email with malicious hyperlinks
fall victim to phishing that enables a�ackers to capture their usernames and
passwords.

Sophisticated, convincing websites can be created by a�ackers using MITM Phishing
Kits that provide simple, easy-to-use interfaces.

Responses to phishing should include a combination of social and technical
components. Along with user education, you should examine implementing SSL/TLS
to enable users to identify legitimate sites, URL filtering to block malicious sites, and
upgrading, hardening and regularly patching Internet browsers.

SAP GUI should also be patched or upgraded to address many of the buffer overflow
vulnerabilities outlined in this chapter. The majority of files in SAP GUI 7.20 are
digitally signed by SAP. Modification breaks the signature, enabling the identification
of compromised files.

Another option is to host SAPGUI on servers rather than workstations using desktop
virtualization. Citrix is generally regarded as the leading solution provider in this
space.

Finally, we recommend disabling SAP GUI scripting if it has been enabled. At the very
least, you should consider restricting the use of scripting APIs to designated groups
using SAPAdmin. For more information, refer to SAP Note 480149 and the SAP GUI
Scripting Security Guide issued by SAP.

LAYER SEVEN SECURITY | PERFECT STORM

Figure 10.1: Web GUI

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

Despite the availability of Web interfaces, SAP GUI remains the most popular means of
connecting to SAP servers. It’s a standard application installed on workstations and a
vital element of SAP’s three tier client, server and database architecture.

Given the prevalence of SAP in today’s businesses, SAP GUI has almost as many
installations in corporations as Internet Explorer and Microso� Office. However,
security professionals are far less informed about SAP GUI vulnerabilities than IE,
Office and Windows issues.

Some of the earliest known vulnerabilities in SAP GUI were discovered in 2008 by
researcher Luigi Auriemma who uncovered several buffer overflow flaws in the
Windows SAPlpd daemon, a printer service available on port 515. 19 The vulnerabilities
can be exploited by an a�acker to provoke denial of service and obtain administrative
access to user workstations. With such access, an a�acker can install Trojans or sniff
user credentials. An a�acker can also obtain usernames and passwords directly from
the sapshortcut.ini configuration file since SAP provides users with the ability to store
passwords in their local directories for auto logon. 20 This will provide direct access to
SAP servers.

Buffer overflows were also found by researchers Mark Litchfield and Alexander
Polyakov, effecting some of the thousands of ActiveX controls embedded in SAP GUI
used to read and write files, execute programs, and connect remotely to SAP servers.
Many of these flaws were rated highly critical by vulnerability assessors. 21

SAP GUI includes a scripting Application Programming Interface (API) that communi-
cates and interacts with servers in the same way as an end user. Although the API is
disabled by default, it is enabled by companies that find it useful for automating
repetitive tasks, as well as server-side testing and client-side integration. Many
security professionals don’t see any risk associated with the use of the scripting API
since it uses the same credentials provided to the end user and therefore, can only
execute transactions granted to the underlying user. However, the script can be used to
log end user interaction with SAP GUI. Consequently, it’s vulnerable to corporate
espionage especially if an a�acker has disabled the security warnings automatically
generated by SAP GUI when a script is executed in the background. This will lessen the
risk of detection.

Also, since scripts can contain logon data and are stored in unencrypted form in local
files, a�ackers are provided with another avenue to steal credentials from
compromised client workstations.

Web-based connections to applications such as the Enterprise Portal (EP), Supplier
Relationship Management (SRM) and Customer Relationship Management (CRM)
through Internet browsers are increasingly common in the SAP landscape. These
connections are managed by the Netweaver AS and offer even less client-side security
than SAP GUI.

There are a number of a�ack vectors for SAP Web clients. One of most dangerous
effects a program called cFolders which is a Web-based platform that enables business
partners to share information and collaborate on documents. The platform uses
cookies to authenticate users and is fully integrated into SRM, Product Lifecycle
Management (PLM) and Knowledge Management (KM).

cFolders is vulnerable to a form of Cross-Site Scripting known as HTML injection that
can lead to the the� of administrator credentials. One of simplest ways to execute this
a�ack is through SRM. This application allows any user to create and store HTML
documents in specific folders. Note that given the nature of the application, a user is
o�en a supplier or other partner. The partner can create a HTML document injected
with a trogan designed to capture the cookie of any user that accesses the document in
cFolders. Since user sessions are not tied to IP addresses, the partner can then use the
cookie to access and modify the documents of other partners and administrative
functions of the system.

Another variant of the a�ack can be used to obtain the credentials required to access
the central ERP instance. If the document is opened by an employee of the target
company, the script can a�ack the vulnerable SAP GUI ActiveX components in the
user’s workstation.

Hackers can also target the standard Web interface used to access SAP with phishing
a�acks. Methods such as email spoofing can be used to lure users to phony logon
screens that appear identical to the standard screen in Figure 10.1. According to some
studies, up to 50 percent of users that receive a spoof email with malicious hyperlinks
fall victim to phishing that enables a�ackers to capture their usernames and
passwords.

Sophisticated, convincing websites can be created by a�ackers using MITM Phishing
Kits that provide simple, easy-to-use interfaces.

Responses to phishing should include a combination of social and technical
components. Along with user education, you should examine implementing SSL/TLS
to enable users to identify legitimate sites, URL filtering to block malicious sites, and
upgrading, hardening and regularly patching Internet browsers.

SAP GUI should also be patched or upgraded to address many of the buffer overflow
vulnerabilities outlined in this chapter. The majority of files in SAP GUI 7.20 are
digitally signed by SAP. Modification breaks the signature, enabling the identification
of compromised files.

Another option is to host SAPGUI on servers rather than workstations using desktop
virtualization. Citrix is generally regarded as the leading solution provider in this
space.

Finally, we recommend disabling SAP GUI scripting if it has been enabled. At the very
least, you should consider restricting the use of scripting APIs to designated groups
using SAPAdmin. For more information, refer to SAP Note 480149 and the SAP GUI
Scripting Security Guide issued by SAP.

27LAYER SEVEN SECURITY | PERFECT STORM

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

The central theme of this Paper is that standard approaches to audit and secure SAP
do not address many of the vulnerabilities confronted by today’s systems. The
generally accepted methods used by professionals to assess SAP security should be
enriched to manage newly identified and emerging risks, as well as respond to lesser
known dangers, previously overlooked by the community.

A comprehensive vulnerability assessment of the technical layer incorporating the use
of commercial or open source tools will manage threats to the confidentiality, integrity
and availability of information within SAP systems. It will also enable companies to
comply with regulatory and industry standards for internalV controls such as SOX
and PCI DSS.

In this section, we will discuss the compliance implications of the specific vulnerabili-
ties presented in this Paper to illustrate the importance of such an assessment and
enable organizations to map countermeasures to specific requirements.

THE SOX AND PCI IMPLICATIONS
OF SAP VULNERABILITIES

CHAPTER ELEVEN

Developed by the IT Governance Institute in 2004 and revised in 2006, the IT Control
Objectives for SOX set the benchmark for technology controls required by public
companies to meet standards of financial reporting and corporate governance
implemented in countries across the globe. It defines twelve wide-ranging standards,
drawn primarily from the COBIT framework.

Figure 11.1 provides a high level mapping between the SAP vulnerability areas and
most of the IT Control Objectives for SOX. The pervasive impact of such vulnerabili-
ties is self-evident, especially in the areas of system security, configuration manage-
ment, problem and incident management and data management.
We can illustrate the impact by looking at one particular example: SAP backdoors and
rootkits, which can bypass controls designed to:

• Ensure the integrity of application controls through SDLC standards (AI2);

• Operate applications and systems in accordance with policies and procedures (AI4);

• Control program changes (AI6);

• Maintain expected service standards (DS1);

• Control system access (DS5);

• Preserve configuration settings (DS9);

• Detect and resolve problems and incidents (DS8); and

• Protect stored or transmitted data from unauthorized access or modification (DS11).

IT CONTROL OBJECTIVES FOR SOX

28LAYER SEVEN SECURITY | PERFECT STORM

AI2

AI4

AI6

DS1

DS5

DS9

DS8

DS11

Acquire and maintain application software

Enable Operations

Manage changes

Define and manage service levels

Ensure system security

Manage the configuration

Manage problems and incidents

Manage data

COBIT IT CONTROL OBJECTIVE FOR SOX

Figure 11.1: IT Control Objectives for SOX

O
S

AU
TH

EN
TI

CA
TI

O
N

RE
M

O
TE

 F
U

N
CT

IO
N

 C
AL

LS

SA
P

GA
TE

W
AY

 A
N

D
M

ES
SA

GE
 S

ER
VE

R

D
EF

AU
LT

 S
AP

 U
SE

RS

SA
P_

N
EW

PA
SS

W
O

RD
 H

AS
H

IN
G

BA
CK

D
O

O
RS

 A
N

D
RO

O
TK

IT
S

SA
P

JA
VA

 E
N

GI
N

E

W
EB

 S
ER

VI
CE

S

SA
P

CL
IE

N
TS

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

29

PCI DSS REQUIREMENT

Figure 11.2: PCI DSS Requirements

O
S

AU
TH

EN
TI

CA
TI

O
N

RE
M

O
TE

 F
U

N
CT

IO
N

 C
AL

LS

SA
P

GA
TE

W
AY

 A
N

D
M

ES
SA

GE
 S

ER
VE

R

D
EF

AU
LT

 S
AP

 U
SE

RS

SA
P_

N
EW

PA
SS

W
O

RD
 H

AS
H

IN
G

BA
CK

D
O

O
RS

 A
N

D
RO

O
TK

IT
S

SA
P

JA
VA

 E
N

GI
N

E

W
EB

 S
ER

VI
CE

S

SA
P

CL
IE

N
TS

Install and maintain a firewall configuration to
protect cardholder data

Do not use vendor-supplied defaults for system
passwords and other security parameters

Encrypt transmission of cardholder data across
open, public networks

Use and regularly update anti-virus software or
programs

Develop and maintain secure systems and ap-
plications

Restrict access to cardholder data by business
need-to-know

Assign a unique ID to each person with com-
puter access

Track and monitor all access to network re-
sources and cardholder data

Regularly test security systems and processes

LAYER SEVEN SECURITY | PERFECT STORM

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

The PCI DSS applies detailed prescriptive information security controls to companies
that store, process or transmit credit card data.

There are twelve specific requirements in the Standard organized into six broad objec-
tives related to network security, the protection of cardholder data, vulnerability man-
agement, access control, monitoring and governance. There are multiple controls
within each requirement, making PCI DSS one of the most expansive frameworks in
information security.

The intersections between the SAP vulnerability areas and nine of the twelve PCI re-
quirements are illustrated in Figure 11.2. Presuming SAP systems are not segregated
from cardholder data environments through network segmentation, the impact is
very high, particularly in areas such as the development and maintenance of secure
systems and applications, restricting access to cardholder data and changing vendor-
supplied defaults for passwords and security parameters.

These areas are heavily affected by vulnerabilities that evade authentication and au-
thorization controls, exploit weak default se�ings in application and OS layers, and
target data during transmission and in the database.

30

PAYMENT CARD INDUSTRY DATA SECURITY STANDARD (DSS)

LAYER SEVEN SECURITY | PERFECT STORM

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

SOFTWARE

PROGRAMS

There are a number of so�ware tools including open source programs that companies
can leverage to audit and secure various areas of SAP systems. Some are custom tools,
designed expressly for SAP. Others are generic but can be used to detect specific flaws
in SAP systems when combined with the appropriate plugins.

Open source programs should be handled with care. Since the source code is open to
everyone, they can be infected with Trojans and other malware. Also, you should be
aware that some of the tools listed below can potentially crash SAP systems or worse if
they are used by inexperienced professionals unfamiliar with vulnerability assessment
and penetration testing techniques using a command line interface. Few provide any
form of support and user guides are, for the most part, non-existent.

Sapyto and Bizploit are capable, open source tools that can be used to perform pen
tests for SAP using RFC connectors. Prerequisites for these tools include RFCDSK
which must be downloaded and installed from the SAP Service Marketplace, Python
v2.5 or higher with development libraries and GCC runtime and utilities.

WEBXML Checker is a tool that can test for certain vulnerabilities in SAP J2EE applica-
tions including verb tampering and the invoker servlet bypass.

Integrity Analyzer and Static Source Code Anaylzer can perform SAP code compari-
sons and therefore can potentially detect backdoors and rootkits in ABAP programs.
The SAP Security Scan Solution can be used to detect ABAP and SQL injection flaws, as
well as other vulnerabilities, in existing SAP code. It can also integrate directly with
the SAP Transport Management System to perform code reviews and auto-correct er-
rors before the release of any new code within a SAP environment.

Burpsuite and Nmap are generic web application assessment platforms which can be
used for port scanning, ping sweeps and the detection of host services.

Most of these tools are available on the Web for both Linux and Windows.

Publically-available audit programs for the technical components of SAP are limited
and do not address many of the areas discussed in this Paper. ISACA has published
several guides designed to test components of SAP Basis which is now part of the
much broader Netweaver platform. Although imperfect, these and other programs
serve some purpose by covering many of the critical administrative functions, configu-
rables, and database and operating system services in SAP.

THE SAP SECURITY TOOLKIT:
SOFTWARE, AUDIT PROGRAM
AND WEB RESOURCES

CHAPTER TWELVE

31

Security Notes are available at the SAP Service Marketplace. Keep in mind that Notes are
o�en deliberately vague since SAP is careful not to broadcast the technical details of
many vulnerabilities which can be exploited by a�ackers before systems are properly
patched. Nonetheless, you should periodically review the site for critical bulletins and
patches.

The SAP Help Portal is a great resource for security guides and other SAP documenta-
tion.

The SANS Institute, OWASP and NIST provide valuable information on the latest secu-
rity trends and vulnerabilities. For information on SAP-specific vulnerabilities, please
read the monthly advisories published by Layer Seven Security and follow the company
blog

The challenge of auditing and securing SAP systems to respond to threats such as those
outlined in this Paper should not be underestimated. The technical complexity of many
of the areas is not only high but constantly evolving. It is unrealistic to expect security
administrators and auditors to effectively manage the hundreds of intricate vulnerabili-
ties in today’s expanding SAP environments without support.

Layer Seven Security’s automated vulnerability assessment service provides an efficient
and cost-effective alternative. It enables companies to combat fraud, reduce audit costs
and rapidly assess the security profile of their SAP systems against compliance require-
ments and SAP recommendations. Our team of highly experienced security profession-
als leverage patent-pending commercial so�ware that examines over 400 technical secu-
rity risks in both the ABAP and Java components of Netweaver. This includes:

• Insecure default configurations

• Dangerous active services

• Unauthorized remote command executions

• Information disclosure

• Use of unencrypted interfaces

• Improperly applied security filters

• Broad administrative user privileges

• Weak access credentials

• Missing SAP Security Notes and patches

The so�ware draws upon the industry’s largest knowledge base of SAP security threats
and is constantly updated by a world-renowned research lab to counteract new vulner-
abilities. It is certified by SAP for integration with Netweaver and is employed by many
Fortune 500 companies and government organizations worldwide. Layer Seven Security
deliver a clear and concise report to stakeholders that effectively conveys the business
impact of technical risks and provides detailed recommendations to remediate vulner-
abilities.

To learn more about SAP vulnerability assessment services or request a sample report,
please contact info@layersevensecurity.com or call 1 888 995 0993.

LAYER SEVEN SECURITY | PERFECT STORM

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

There are a number of so�ware tools including open source programs that companies
can leverage to audit and secure various areas of SAP systems. Some are custom tools,
designed expressly for SAP. Others are generic but can be used to detect specific flaws
in SAP systems when combined with the appropriate plugins.

Open source programs should be handled with care. Since the source code is open to
everyone, they can be infected with Trojans and other malware. Also, you should be
aware that some of the tools listed below can potentially crash SAP systems or worse if
they are used by inexperienced professionals unfamiliar with vulnerability assessment
and penetration testing techniques using a command line interface. Few provide any
form of support and user guides are, for the most part, non-existent.

Sapyto and Bizploit are capable, open source tools that can be used to perform pen
tests for SAP using RFC connectors. Prerequisites for these tools include RFCDSK
which must be downloaded and installed from the SAP Service Marketplace, Python
v2.5 or higher with development libraries and GCC runtime and utilities.

WEBXML Checker is a tool that can test for certain vulnerabilities in SAP J2EE applica-
tions including verb tampering and the invoker servlet bypass.

Integrity Analyzer and Static Source Code Anaylzer can perform SAP code compari-
sons and therefore can potentially detect backdoors and rootkits in ABAP programs.
The SAP Security Scan Solution can be used to detect ABAP and SQL injection flaws, as
well as other vulnerabilities, in existing SAP code. It can also integrate directly with
the SAP Transport Management System to perform code reviews and auto-correct er-
rors before the release of any new code within a SAP environment.

Burpsuite and Nmap are generic web application assessment platforms which can be
used for port scanning, ping sweeps and the detection of host services.

Most of these tools are available on the Web for both Linux and Windows.

Publically-available audit programs for the technical components of SAP are limited
and do not address many of the areas discussed in this Paper. ISACA has published
several guides designed to test components of SAP Basis which is now part of the
much broader Netweaver platform. Although imperfect, these and other programs
serve some purpose by covering many of the critical administrative functions, configu-
rables, and database and operating system services in SAP.

Security Notes are available at the SAP Service Marketplace. Keep in mind that Notes are
o�en deliberately vague since SAP is careful not to broadcast the technical details of
many vulnerabilities which can be exploited by a�ackers before systems are properly
patched. Nonetheless, you should periodically review the site for critical bulletins and
patches.

The SAP Help Portal is a great resource for security guides and other SAP documenta-
tion.

The SANS Institute, OWASP and NIST provide valuable information on the latest secu-
rity trends and vulnerabilities. For information on SAP-specific vulnerabilities, please
read the monthly advisories published by Layer Seven Security and follow the company
blog

The challenge of auditing and securing SAP systems to respond to threats such as those
outlined in this Paper should not be underestimated. The technical complexity of many
of the areas is not only high but constantly evolving. It is unrealistic to expect security
administrators and auditors to effectively manage the hundreds of intricate vulnerabili-
ties in today’s expanding SAP environments without support.

Layer Seven Security’s automated vulnerability assessment service provides an efficient
and cost-effective alternative. It enables companies to combat fraud, reduce audit costs
and rapidly assess the security profile of their SAP systems against compliance require-
ments and SAP recommendations. Our team of highly experienced security profession-
als leverage patent-pending commercial so�ware that examines over 400 technical secu-
rity risks in both the ABAP and Java components of Netweaver. This includes:

• Insecure default configurations

• Dangerous active services

• Unauthorized remote command executions

• Information disclosure

• Use of unencrypted interfaces

• Improperly applied security filters

• Broad administrative user privileges

• Weak access credentials

• Missing SAP Security Notes and patches

The so�ware draws upon the industry’s largest knowledge base of SAP security threats
and is constantly updated by a world-renowned research lab to counteract new vulner-
abilities. It is certified by SAP for integration with Netweaver and is employed by many
Fortune 500 companies and government organizations worldwide. Layer Seven Security
deliver a clear and concise report to stakeholders that effectively conveys the business
impact of technical risks and provides detailed recommendations to remediate vulner-
abilities.

To learn more about SAP vulnerability assessment services or request a sample report,
please contact info@layersevensecurity.com or call 1 888 995 0993.

WEB

VULNERABILITY ASSESSMENT SERVICES

32LAYER SEVEN SECURITY | PERFECT STORM

Password security is a standard feature of most SAP security audits. However, the fo-
cus has traditionally been upon on parameter se�ings such as complexity require-
ments, password length, expiration time, lock-outs, etc. These parameters are well
known and can be checked through report RSPARAM via transaction code SA38. In
this Chapter, we will discuss some of the lesser known facts about SAP passwords. In
particular, password hashing and downwards compatibility. Vulnerabilities in these ar-
eas can be exploited by a�ackers to crack user passwords and logon to SAP applica-
tions with stolen credentials. According to some assessments, more than 90 percent of
SAP systems are vulnerable to such exploits.

Let’s start with some good news: SAP does not store passwords in clear text. Passwords
are stored as hashes in the tables USR02 and USH02. The hashing algorithms used by
SAP have evolved over time to become progressively more secure in response to vul-
nerabilities in prior algorithms. Each algorithm is identified by a code version using
the acronym CODVN. CODVN A is the least secure, whereas CODVN I, the latest algo-
rithm, is the most secure.

CODVN B and F are of particular interest. The first is based on a MD5 hashing scheme,
which supports case insensitive passwords up to eight characters long.

The second uses a SHA-1 hashing scheme and allows case-sensitive passwords up to 40
characters in length. When introduced in Netweaver 7.0, CODVN F represented a quan-
tum leap in password security since it used fixed salt values.

There are numerous so�ware tools that a�ackers can use to decrypt hashes. One of
the most popular is John the Ripper which can run on almost any platform including
UNIX, Windows and OpenVMS. John the Ripper auto-detects hashing mechanisms
and can perform both dictionary and brute force a�acks on DES, MD5 and other
hashes. Since 2005, the tool has been able to crack CODVN B and CODVN F passwords
in SAP. The patch that enables hackers to break such passwords was publicly released
in 2008 and is available on the World Wide Web.

There is a caveat to cracking SAP passwords: an a�acker would need access to SE16 to
extract the USR02 table (Figure 6.1) which would then be downloaded to a local file sys-
tem in order to be processed by a hacking tool. However, a hacker could use one of the
a�ack vectors outlined in other chapters of this Paper to obtain administrative privi-
leges in SAP or alternatively, direct access to the database. Unencrypted data backups
can also be used to extract USR02. SOAP functions such as RFC_READ_TABLE provide
yet another avenue since they allow any table to be read remotely.

Once the table has been extracted and processed, John the Ripper will display cracked
passwords against the relevant user IDs. The a�acker would then simply use the sto-
len credentials of dialog users to logon into SAP and execute fraudulent or malicious
actions. Needless to say, the a�acker is likely to target administrative and other privi-
leged users.

Password hashes are stored in specific fields of the USR02 table. CODVN B hashes are
stored in the BCODE field, CODVN F hashes are stored in the PASSCODE field and so

on. As you can see, hashes for each code version are stored in separate fields. Generally,
there should only be one field in every USR02 table for password hashes. The name of
the specific field used to store password hashes in the table will be determined by the
code version in use.

There are some exceptions to this rule: table USR02 will contain fields for both CODVN
B and F hashes if code version G is in use. This is because CODVN G isn’t really an algo-
rithm. It’s a mechanism that allows the use of two different code versions at the same
time. This scenario could create vulnerabilities if downwards compatibility is allowed
through the login/ password downwards compatibility parameter. The default value
set by SAP is 1 which means that the table will store passwords in the BCODE field us-
ing the weak CODVN B algorithm alongside the PASSCODE field which will contain
the stronger CODVN F hashes. BCODE truncates the password to eight characters and
converts it into uppercase. PASSCODE, on the other hand, will store the full password
using upper and lower case. This is unlikely to deter a�ackers since most SAP pass-
words are no longer than eight characters and case sensitivity can be by-passed once a
password is available in clear text.

In summary, the stronger security offered by later code versions through more com-
plex algorithms can be defeated if downwards compatibility is enabled and hackers are
able to target weaker hashes that are still retained in the database. This is especially a
problem if a weak password policy is enforced requiring eight characters or less with
minimal complexity requirements.

The most recent code version, CODVN I, also suffers from downwards compatibility by
storing CODVN B and F hashes, together with the strong hashes for CODVN H which
contain random salts.

As a countermeasure, SAP recommends a robust password policy, as well as restricting
access to table USR02, together with other tables that store password hashes such as
USH02 and USRPWDHISTORY. Access to transactions SE11, SE16 and SE17 should also
be tightly controlled.

SAP urges customers to activate the latest password mechanisms available for their re-
lease, disable downwards compatibility and delete redundant password hashes from
the relevant tables.

However, downwards compatibility may be required in cases where a Central User
Administration supports access to multiple systems. SAP provides a number of op-
tions for the password_ downwards_ compatibility parameter to deal with such sce-
narios. Note that if value 4 is selected for the parameter, SAP will allow successful log-
ons against the downward compatible hashes without an entry in the system log. In
the next chapter, we will reveal how this configuration can be used by an a�acker to
create a backdoor into SAP.

ENDNOTES

31

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

The ERP Security Challenge, CSO Online, 2008

Denial of Service, Header Injection/ CRLF, Improper Error Handling,
and Malicious File Execution

Office of the Senate Sergeant at Arms, 2010

Joint Study on Canadian Security Practices, Rotman School of Management,
University of Toronto, 2010

2011 Data Breach Investigations Report (DBIR)

Defining the Next Generation Firewall, Gartner RAS Core Research Note G00171540, 2009

CF Disclosure Guidance: Topic No. 2, Securities and Exchange Commission, October 2011

Refer to SAP Note 186119

Refer to Notes 1003908, 1003910, 1003910, 1004084 and 1005397

nvd.nist.gov

Protecting Java and ABAP Based Applications Against Common A�acks, SAP, December 2010

Refer to SAP Notes 1467771 and 1445998

Refer to SAP Note 1483888

Securing Header Authentication, SAP Developer Network, 2006

help.sap.com/saphelp_nw70ehp2/helpdata/en/d0/a3d940c2653126e10000000a1550b0/
frameset.htm

sdn.sap.com/irj/scn/index?rid=/library/uuid/b161a590-0201-0010-5590-91fa5076a914#q-4-1

help.sap.com/saphelp_nw73/helpdata/en/48/45acaf43a64bb8e10000000a42189b/frameset.htm

SAP Note 1394100 – Access to RFC enabled modules via SOAP. Also refer to Notes 1433101 and
1580017

aluigi.altervista.org/adv/saplpdz-adv.txt

Refer to SAP Note 146173

computerweekly.com/news/2240081941/ActiveX-security-flaws-plague-SAP-GUI

A BRAVE NEW WORLD OF SAP SECURITY
PERFECT STORM

WHITE PAPER

LAYER SEVEN SECURITY

CONTACT US
Westbury Corporate Centre
2275 Upper Middle Road East, Suite 101
Oakville, Ontario, L6H 0C3, Canada
Tel. (Toll Free): 1 888 995 0993
Tel. (Office): 905 491 6950
Fax.: 905 491 6801
E-mail: info@layersevensecurity.com
www.layersevensecurity.com

Layer Seven Security empowers organisations to realize the potential of

SAP systems. We serve customers worldwide to secure systems from cyber threats.

We take an integrated approach to build layered controls for defense in depth.

LAYER SEVEN SECURITY

